344,853 research outputs found

    Cartesian Minds

    Get PDF
    According to a basic dualistic conception that originated in Descartes, minds are immaterial, non-spatial and simple thinking particulars that are independent of anything material. Call this view the Cartesian conception, and minds thus conceived, Cartesian minds. In what follows I propose a new version of an argument against the Cartesian conception that can be traced back to Descartes" days (Garber and Ayers 1998, 232). The inspiration behind my version is an argument suggested by Strawson"s seminal discussion of the concept of a person (1959, Chaps. 3-4). However, in both form and substance my argument takes its own course

    Two dimensional vernier

    Get PDF
    A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction

    On products in the coarse shape categories

    Get PDF
    The paper is devoted to the study of coarse shape of Cartesian products of topological spaces. If the Cartesian product of two spaces XX and YY admits an HPol-expansion, which is the Cartesian product of HPol-expansions of these spaces, then X×YX\times Y is a product in the coarse shape category. As a consequence, the Cartesian product of two compact Hausdorff spaces is a product in the coarse shape category. Finally, we show that the shape groups and the coarse shape groups commute with products under some conditions.Comment: 11 page

    Partial Horn logic and cartesian categories

    Get PDF
    A logic is developed in which function symbols are allowed to represent partial functions. It has the usual rules of logic (in the form of a sequent calculus) except that the substitution rule has to be modified. It is developed here in its minimal form, with equality and conjunction, as “partial Horn logic”. Various kinds of logical theory are equivalent: partial Horn theories, “quasi-equational” theories (partial Horn theories without predicate symbols), cartesian theories and essentially algebraic theories. The logic is sound and complete with respect to models in , and sound with respect to models in any cartesian (finite limit) category. The simplicity of the quasi-equational form allows an easy predicative constructive proof of the free partial model theorem for cartesian theories: that if a theory morphism is given from one cartesian theory to another, then the forgetful (reduct) functor from one model category to the other has a left adjoint. Various examples of quasi-equational theory are studied, including those of cartesian categories and of other classes of categories. For each quasi-equational theory another, , is constructed, whose models are cartesian categories equipped with models of . Its initial model, the “classifying category” for , has properties similar to those of the syntactic category, but more precise with respect to strict cartesian functors

    Fast Recognition of Partial Star Products and Quasi Cartesian Products

    Get PDF
    This paper is concerned with the fast computation of a relation R\R on the edge set of connected graphs that plays a decisive role in the recognition of approximate Cartesian products, the weak reconstruction of Cartesian products, and the recognition of Cartesian graph bundles with a triangle free basis. A special case of R\R is the relation δ\delta^\ast, whose convex closure yields the product relation σ\sigma that induces the prime factor decomposition of connected graphs with respect to the Cartesian product. For the construction of R\R so-called Partial Star Products are of particular interest. Several special data structures are used that allow to compute Partial Star Products in constant time. These computations are tuned to the recognition of approximate graph products, but also lead to a linear time algorithm for the computation of δ\delta^\ast for graphs with maximum bounded degree. Furthermore, we define \emph{quasi Cartesian products} as graphs with non-trivial δ\delta^\ast. We provide several examples, and show that quasi Cartesian products can be recognized in linear time for graphs with bounded maximum degree. Finally, we note that quasi products can be recognized in sublinear time with a parallelized algorithm
    corecore