1,903 research outputs found
Limited Feedback in Multiple-Antenna Systems with One-Bit Quantization
Communication systems with low-resolution analog-to-digital-converters (ADCs)
can exploit channel state information at the transmitter (CSIT) and receiver.
This paper presents initial results on codebook design and performance analysis
for limited feedback systems with one-bit ADCs. Different from the
high-resolution case, the absolute phase at the receiver is important to align
the phase of the received signals when the received signal is sliced by one-bit
ADCs. A new codebook design for the beamforming case is proposed that
separately quantizes the channel direction and the residual phase.Comment: Asilomar Conference on Signals, Systems, and Computers 201
One-Bit Massive MIMO: Channel Estimation and High-Order Modulations
We investigate the information-theoretic throughout achievable on a fading
communication link when the receiver is equipped with one-bit analog-to-digital
converters (ADCs). The analysis is conducted for the setting where neither the
transmitter nor the receiver have a priori information on the realization of
the fading channels. This means that channel-state information needs to be
acquired at the receiver on the basis of the one-bit quantized channel outputs.
We show that least-squares (LS) channel estimation combined with joint pilot
and data processing is capacity achieving in the single-user,
single-receive-antenna case.
We also investigate the achievable uplink throughput in a massive
multiple-input multiple-output system where each element of the antenna array
at the receiver base-station feeds a one-bit ADC. We show that LS channel
estimation and maximum-ratio combining are sufficient to support both multiuser
operation and the use of high-order constellations. This holds in spite of the
severe nonlinearity introduced by the one-bit ADCs
On Low-Resolution ADCs in Practical 5G Millimeter-Wave Massive MIMO Systems
Nowadays, millimeter-wave (mmWave) massive multiple-input multiple-output
(MIMO) systems is a favorable candidate for the fifth generation (5G) cellular
systems. However, a key challenge is the high power consumption imposed by its
numerous radio frequency (RF) chains, which may be mitigated by opting for
low-resolution analog-to-digital converters (ADCs), whilst tolerating a
moderate performance loss. In this article, we discuss several important issues
based on the most recent research on mmWave massive MIMO systems relying on
low-resolution ADCs. We discuss the key transceiver design challenges including
channel estimation, signal detector, channel information feedback and transmit
precoding. Furthermore, we introduce a mixed-ADC architecture as an alternative
technique of improving the overall system performance. Finally, the associated
challenges and potential implementations of the practical 5G mmWave massive
MIMO system {with ADC quantizers} are discussed.Comment: to appear in IEEE Communications Magazin
- …