116,075 research outputs found

    Calcium-mediated signal transduction in transgenic Nicotiana plumbaginifolia

    Get PDF

    Adrenergic regulation of ureogenesis in hepatocytes from adrenalectomized rats Possible involvement of two pathways of signal transduction in Ξ±1-adrenergic action

    Get PDF
    AbstractIn hepatocytes from control rats, the ureogenic action of epinephrine is mainly mediated through Ξ±1-adrenoceptors and the effect is independent of the presence of extracellular calcium. In hepatocytes from adrenalectomized rats, both Ξ±1- and Ξ²-adrenoceptors are involved in the action of epinephrine. Furthermore, the Ξ±1-adrenergic-mediated stimulation of ureogenesis in these cells is dependent on the presence of extracellular calcium. Our results indicate that glucocorticoids modulate the calcium dependency of Ξ±1-adrenergic effects and are consistent with our suggestion that two pathways are involved in the transduction of the Ξ±1-adrenergic signal

    Reconstitution of T cell receptor signaling in ZAP-70-deficient cells by retroviral transduction of the ZAP-70 gene.

    Get PDF
    A variant of severe combined immunodeficiency syndrome (SCID) with a selective inability to produce CD8 single positive T cells and a signal transduction defect in peripheral CD4+ cells has recently been shown to be the result of mutations in the ZAP-70 gene. T cell receptor (TCR) signaling requires the association of the ZAP-70 protein tyrosine kinase with the TCR complex. Human T cell leukemia virus type I-transformed CD4+ T cell lines were established from ZAP-70-deficient patients and normal controls. ZAP-70 was expressed and appropriately phosphorylated in normal T cell lines after TCR engagement, but was not detected in T cell lines from ZAP-70-deficient patients. To determine whether signaling could be reconstituted, wild-type ZAP-70 was introduced into deficient cells with a ZAP-70 retroviral vector. High titer producer clones expressing ZAP-70 were generated in the Gibbon ape leukemia virus packaging line PG13. After transduction, ZAP-70 was detected at levels equivalent to those observed in normal cells, and was appropriately phosphorylated on tyrosine after receptor engagement. The kinase activity of ZAP-70 in the reconstituted cells was also appropriately upregulated by receptor aggregation. Moreover, normal and transduced cells, but not ZAP-70-deficient cells, were able to mobilize calcium after receptor ligation, indicating that proximal TCR signaling was reconstituted. These results indicate that this form of SCID may be corrected by gene therapy

    Involvement of Protein Kinase C and Protein Kinase A in the Enhancement of L-type Calcium Current by GABA\u3csub\u3eB\u3c/sub\u3e Receptor Activation in Neonatal Hippocampus

    Get PDF
    In the early neonatal period activation of GABAB receptors attenuates calcium current through N-type calcium channels while enhancing current through L-type calcium channels in rat hippocampal neurons. The attenuation of N-type calcium current has been previously demonstrated to occur through direct interactions of the Ξ²Ξ³ subunits of Gi/o G-proteins, but the signal transduction pathway for the enhancement of L-type calcium channels in mammalian neurons remains unknown. In the present study, calcium currents were elicited in acute cultures from postnatal day 6–8 rat hippocampi in the presence of various modulators of protein kinase A (PKA) and protein kinase C (PKC) pathways. Overnight treatment with an inhibitor of Gi/o (pertussis toxin, 200 ng/ml) abolished the attenuation of calcium current by the GABAB agonist, baclofen (10 ΞΌM) with no effect on the enhancement of calcium current. These data indicate that while the attenuation of N-type calcium current is mediated by the Gi/o subtype of G-protein, the enhancement of L-type calcium current requires activation of a different G-protein. The enhancement of the sustained component of calcium current by baclofen was blocked by PKC inhibitors, GF-109203X (500 nM), chelerythrine chloride (5 ΞΌM), and PKC fragment 19–36 (2 ΞΌM) and mimicked by the PKC activator phorbol-12-myristate-13-acetate (1 ΞΌM). The enhancement of the sustained component of calcium current was blocked by PKA inhibitors H-89 (1 ΞΌM) and PKA fragment 6–22 (500 nM) but not Rp-cAMPS (30 ΞΌM) and it was not mimicked by the PKA activator, 8-Br-cAMP (500 ΞΌM–1 mM). The data suggest that activation of PKC alone is sufficient to enhance L-type calcium current but that PKA may also be involved in the GABAB receptor mediated effect

    Levels of Ca\u3csub\u3ev\u3c/sub\u3e1.2 L-Type Ca\u3csup\u3e2+\u3c/sup\u3e Channels Peak in the First Two Weeks in Rat Hippocampus Whereas Ca\u3csub\u3ev\u3c/sub\u3e1.3 Channels Steadily Increase through Development

    Get PDF
    Influx of calcium through voltage-dependent channels regulates processes throughout the nervous system. Specifically, influx through L-type channels plays a variety of roles in early neuronal development and is commonly modulated by G-protein-coupled receptors such as GABAB receptors. Of the four isoforms of L-type channels, only Cav1.2 and Cav1.3 are predominately expressed in the nervous system. Both isoforms are inhibited by the same pharmacological agents, so it has been difficult to determine the role of specific isoforms in physiological processes. In the present study, Western blot analysis and confocal microscopy were utilized to study developmental expression levels and patterns of Cav1.2 and Cav1.3 in the CA1 region of rat hippocampus. Steady-state expression of Cav1.2 predominated during the early neonatal period decreasing by day 12. Steady-state expression of Cav1.3 was low at birth and gradually rose to adult levels by postnatal day 15. In immunohistochemical studies, antibodies against Cav1.2 and Cav1.3 demonstrated the highest intensity of labeling in the proximal dendrites at all ages studied (P1–72). Immunohistochemical studies on one-week-old hippocampi demonstrated significantly more colocalization of GABAB receptors with Cav1.2 than with Cav1.3, suggesting that modulation of L-type calcium current in early development is mediated through Cav1.2 channels

    Signaling pathways for transduction of the initial message of the glycocode into cellular responses

    Get PDF
    The sugar units of glycan structures store information and establish an alphabet of life. The language of the oligosaccharide coding units is deciphered by receptors such as lectins and the decoded message can be transduced by multiple signaling pathways. Similar to glycoconjugates, these receptors can exhibit pronounced changes in quantitative and qualitative aspects of expression, as attested by a wealth of lectin and immunohistochemical studies. Since histochemistry provides a static picture, it is essential to shed light on the mechanisms of how a recognitive protein-carbohydrate interplay can be transduced into cellular responses. Their consequences for example for cell morphology will then be visible to the histochemist. Therefore, basic signaling routes will be graphically outlined and their trigger potential will be explained by selected examples from the realm of glycosciences

    Identification of an alternative G{alpha}q-dependent chemokine receptor signal transduction pathway in dendritic cells and granulocytes

    Get PDF
    CD38 controls the chemotaxis of leukocytes to some, but not all, chemokines, suggesting that chemokine receptor signaling in leukocytes is more diverse than previously appreciated. To determine the basis for this signaling heterogeneity, we examined the chemokine receptors that signal in a CD38-dependent manner and identified a novel "alternative" chemokine receptor signaling pathway. Similar to the "classical" signaling pathway, the alternative chemokine receptor pathway is activated by G{alpha}i2-containing Gi proteins. However, unlike the classical pathway, the alternative pathway is also dependent on the Gq class of G proteins. We show that G{alpha}q-deficient neutrophils and dendritic cells (DCs) make defective calcium and chemotactic responses upon stimulation with N-formyl methionyl leucyl phenylalanine and CC chemokine ligand (CCL) 3 (neutrophils), or upon stimulation with CCL2, CCL19, CCL21, and CXC chemokine ligand (CXCL) 12 (DCs). In contrast, G{alpha}q-deficient T cell responses to CXCL12 and CCL19 remain intact. Thus, the alternative chemokine receptor pathway controls the migration of only a subset of cells. Regardless, the novel alternative chemokine receptor signaling pathway appears to be critically important for the initiation of inflammatory responses, as G{alpha}q is required for the migration of DCs from the skin to draining lymph nodes after fluorescein isothiocyanate sensitization and the emigration of monocytes from the bone marrow into inflamed skin after contact sensitization

    Bioengineering models of cell signaling

    Get PDF
    Strategies for rationally manipulating cell behavior in cell-based technologies and molecular therapeutics and understanding effects of environmental agents on physiological systems may be derived from a mechanistic understanding of underlying signaling mechanisms that regulate cell functions. Three crucial attributes of signal transduction necessitate modeling approaches for analyzing these systems: an ever-expanding plethora of signaling molecules and interactions, a highly interconnected biochemical scheme, and concurrent biophysical regulation. Because signal flow is tightly regulated with positive and negative feedbacks and is bidirectional with commands traveling both from outside-in and inside-out, dynamic models that couple biophysical and biochemical elements are required to consider information processing both during transient and steady-state conditions. Unique mathematical frameworks will be needed to obtain an integrated perspective on these complex systems, which operate over wide length and time scales. These may involve a two-level hierarchical approach wherein the overall signaling network is modeled in terms of effective "circuit" or "algorithm" modules, and then each module is correspondingly modeled with more detailed incorporation of its actual underlying biochemical/biophysical molecular interactions

    Differential Regulation of Growth-Promoting Signalling Pathways by E-Cadherin

    Get PDF
    Background: Despite the well-documented association between loss of E-cadherin and carcinogenesis, as well as the link between restoration of its expression and suppression of proliferation in carcinoma cells, the ability of E-cadherin to modulate growth-promoting cell signalling in normal epithelial cells is less well understood and frequently contradictory. The potential for E-cadherin to co-ordinate different proliferation-associated signalling pathways has yet to be fully explored. Methodology/Principal Findings: Using a normal human urothelial (NHU) cell culture system and following a calcium-switch approach, we demonstrate that the stability of NHU cell-cell contacts differentially regulates the Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-Regulated Kinase (ERK) and Phosphatidylinositol 3-Kinase (PI3-K)/AKT pathways. We show that stable cell contacts down-modulate the EGFR/ERK pathway, whilst inducing PI3-K/AKT activity, which transiently enhances cell growth at low density. Functional inactivation of E-cadherin interferes with the capacity of NHU cells to form stable calcium-mediated contacts, attenuates E-cadherin-mediated PI3-K/AKT induction and enhances NHU cell proliferation by allowing de-repression of the EGFR/ERK pathway and constitutive activation of beta-catenin-TCF signalling. Conclusions/Significance: Our findings provide evidence that E-cadherin can differentially and concurrently regulate specific growth-related signalling pathways in a context-specific fashion, with direct, functional consequences for cell proliferation and population growth. Our observations not only reveal a novel, complex role for E-cadherin in normal epithelial cell homeostasis and tissue regeneration, but also provide the basis for a more complete understanding of the consequences of E-cadherin loss on malignant transformation
    • …
    corecore