2,176 research outputs found

    Multi-Cancer Computational Analysis Reveals Metastasis-Associated Variant of Desmoplastic Reaction Involving INHBA and THBS2

    Get PDF
    Despite extensive research, the details of the metastasis-associated biological mechanisms are largely unknown. Here, we analyze data from multiple cancers using a novel computational method identifying sets of genes whose coordinated overexpression indicates the presence of a particular phenotype. We conclude that there is one shared “core” metastasis-associated gene expression signature corresponding to a specific variant of desmoplastic reaction, present in a large subset of samples that have exceeded a threshold of invasive transition specific to each cancer, indicating that the biological mechanism is triggered at that point. For example this threshold is reached at stage IIIc in ovarian cancer and at stage II in colorectal cancer. It has several features, such as coordinated expression of particular collagens, mainly COL11A1 and other genes, mainly THBS2 and INHBA. The universally prominent presence of INHBA in all cancers strongly suggests a biological mechanism centered on activin A induced TGF-β signaling, because activin A is a member of the TGF-β superfamily consisting of an INHBA homodimer. It is accompanied by the expression of several transcription factors related to epithelial-mesenchymal transition, but not of SNAI1, and expression of E-cadherin is not downregulated. It is reversible, as evidenced by its absence in many matched metastasized samples, but its presence indicates that metastasis has occurred. Therefore, these results can be used for developing high-specificity biomarkers, as well as potential multi-cancer metastasis-inhibiting therapeutics targeting the corresponding biological mechanism

    BMP2 and TGF-β Cooperate Differently during Synovial-Derived Stem-Cell Chondrogenesis in a Dexamethasone-Dependent Manner

    Get PDF
    Recent studies highlighting mesenchymal stem cell (MSC) epigenetic memory suggest that a different differentiation medium may be required depending on the tissue of origin. As synovial-derived stem cells (SDSCs) attract interest we aimed to investigate the influence of TGF-β1, BMP-2 and dexamethasone on SDSC chondrogenesis in vitro. We demonstrate that dexamethasone-free medium led to enhanced chondrogenic differentiation at both the mRNA and matrix level. The greatest COL2A1/COL10A1 ratio was detected in cells exposed to a combination medium containing 10 ng/mL BMP-2 and 1 ng/mL TGF-β1 in the absence of dexamethasone, and this was reflected in the total amount of glycosaminoglycans produced. In summary, dexamethasone-free medium containing BMP-2 and TGF-β1 may be the most suitable when using SDSCs for cartilage tissue regeneration

    Chondrogenic potential of human articular chondrocytes and skeletal stem cells: a comparative study

    No full text
    Regenerative medicine strategies have increasingly focused on skeletal stem cells (SSCs), in response to concerns such as donor site morbidity, dedifferentiation and limited lifespan associated with the use of articular chondrocytes for cartilage repair. The suitability of SSCs for cartilage regeneration, however, remains to be fully determined. This study has examined the chondrogenic potential of human STRO-1-immunoselected SSCs (STRO-1+ SSCs), in comparison to human articular chondrocytes (HACs), by utilising two bioengineering strategies, namely ‘‘scaffold-free’’ three-dimensional(3-D) pellet culture and culture using commercially available, highly porous, 3-D scaffolds with interconnected pore networks. STRO-1+ SSCs were isolated by magnetic-activated cell sorting from bone marrow samples of haematologically normal osteoarthritic individuals following routine hip replacement procedures. Chondrocytes were isolated by sequential enzymatic digestion of deep zone articular cartilage pieces dissected from femoral heads of the same individuals. After expansion in monolayer cultures, the harvested cell populations were centrifuged to form high-density 3-D pellets and also seeded in the 3-D scaffold membranes, followed by culture in serum-free chondrogenic media under static conditions for 21 and 28 days, respectively. Chondrogenic differentiation was determined by gene expression,histological and immunohistochemical analyses. Robust cartilage formation and expression of hyaline cartilage-specific markers were observed in both day-21 pellets and day-28 explants generated using HACs. In comparison, STRO-1+ SSCs demonstrated significantly lower chondrogenic differentiation potential and a tendency for hypertrophic differentiation in day-21 pellets. Culture of STRO-1+ SSCs in the 3-D scaffolds improved the expression of hyaline cartilage-specific markers in day-28 explants, however, was unable to prevent hypertrophic differentiation of the SSC population. The advantages of application of SSCs in tissue engineering are widely recognised; the results of this study, however, highlight the need for further development of cell culture protocols that may otherwise limit the application of this stem cell population in cartilage bioengineering strategies

    Human Developmental Chondrogenesis as a Basis for Engineering Chondrocytes from Pluripotent Stem Cells

    Get PDF
    Joint injury and osteoarthritis affect millions of people worldwide, but attempts to generate articular cartilage using adult stem/progenitor cells have been unsuccessful. We hypothesized that recapitulation of the human developmental chondrogenic program using pluripotent stem cells (PSCs) may represent a superior approach for cartilage restoration. Using laser-capture microdissection followed by microarray analysis, we first defined a surface phenotype (CD166(low/neg)CD146(low/neg)CD73(+)CD44(low)BMPR1B(+)) distinguishing the earliest cartilage committed cells (prechondrocytes) at 5-6 weeks of development. Functional studies confirmed these cells are chondrocyte progenitors. From 12 weeks, only the superficial layers of articular cartilage were enriched in cells with this progenitor phenotype. Isolation of cells with a similar immunophenotype from differentiating human PSCs revealed a population of CD166(low/neg)BMPR1B(+) putative cartilage-committed progenitors. Taken as a whole, these data define a developmental approach for the generation of highly purified functional human chondrocytes from PSCs that could enable substantial progress in cartilage tissue engineering.Fil: Wu, Ling. University of California at Los Angeles; Estados UnidosFil: Bluguermann, Carolina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia. Laboratorio de Biología del Desarrollo Celular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of California at Los Angeles; Estados UnidosFil: Kyupelyan, Levon. University of California at Los Angeles; Estados UnidosFil: Latour, Brooke. University of California at Los Angeles; Estados UnidosFil: Gonzalez, Stephanie. University of California at Los Angeles; Estados UnidosFil: Shah, Saumya. University of California at Los Angeles; Estados UnidosFil: Galic, Zoran. University of California at Los Angeles; Estados UnidosFil: Ge, Sundi. University of California at Los Angeles; Estados UnidosFil: Zhu, Yuhua. University of California at Los Angeles; Estados UnidosFil: Petrigliano, Frank A.. University of California at Los Angeles; Estados UnidosFil: Nsair, Ali. University of California at Los Angeles; Estados UnidosFil: Miriuka, Santiago Gabriel. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia. Laboratorio de Biología del Desarrollo Celular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Li, Xinmin. University of California at Los Angeles; Estados UnidosFil: Lyons, Karen M.. University of California at Los Angeles; Estados UnidosFil: Crooks, Gay M.. University of California at Los Angeles; Estados UnidosFil: McAllister, David R.. University of California at Los Angeles; Estados UnidosFil: Van Handel, Ben. Novogenix Laboratories; Estados UnidosFil: Adams, John S.. University of California at Los Angeles; Estados UnidosFil: Evseenko, Denis. University of California at Los Angeles; Estados Unido

    Bone growth following demineralized bone matrix implantation requires angiogenesis

    Full text link
    Angiogenesis is required for endochondral ossification during development and fracture healing; however the exact mechanisms and temporal relationship between the two processes remains unclear. In this study, we utilize an in vivo model of endochondral ossification in mice by implanting demineralized bone matrix (DBM) proximal to the femur to induce ectopic bone formation. TNP-470, a drug known to be anti-angiogenic, was used to inhibit vascularization during the time course of de novo bone formation in order to define the role of angiogenesis during the chondrogenic phase of endochondral bone formation. Day 2, day 8, and day 16 post-surgery were selected time points to represent pre-chondrogenic, chondrogenic, and bone mineralization stages, respectively. Plain x-ray and micro-CT analysis showed that inhibition of angiogenesis led to decreased mineralized tissue formation. Inhibited angiogenesis was confirmed with qRT-PCR. Most striking, however, is that while stem cells are recruited and committed to the chondrogenic lineage, subsequent chondrogenesis failed to progress based on the failure of Sox5 and Sox6 expression, which directs chondrocyte commitment. This expands the role for angiogenesis to a much earlier stage than currently thought and places the necessity of angiogenesis very early in the endochondral ossification process

    SOX9 Governs Differentiation Stage-Specific Gene Expression in Growth Plate Chondrocytes via Direct Concomitant Transactivation and Repression

    Get PDF
    Cartilage and endochondral bone development require SOX9 activity to regulate chondrogenesis, chondrocyte proliferation, and transition to a non-mitotic hypertrophic state. The restricted and reciprocal expression of the collagen X gene, Col10a1, in hypertrophic chondrocytes and Sox9 in immature chondrocytes epitomise the precise spatiotemporal control of gene expression as chondrocytes progress through phases of differentiation, but how this is achieved is not clear. Here, we have identified a regulatory element upstream of Col10a1 that enhances its expression in hypertrophic chondrocytes in vivo. In immature chondrocytes, where Col10a1 is not expressed, SOX9 interacts with a conserved sequence within this element that is analogous to that within the intronic enhancer of the collagen II gene Col2a1, the known transactivation target of SOX9. By analysing a series of Col10a1 reporter genes in transgenic mice, we show that the SOX9 binding consensus in this element is required to repress expression of the transgene in non-hypertrophic chondrocytes. Forced ectopic Sox9 expression in hypertrophic chondrocytes in vitro and in mice resulted in down-regulation of Col10a1. Mutation of a binding consensus motif for GLI transcription factors, which are the effectors of Indian hedgehog signaling, close to the SOX9 site in the Col10a1 regulatory element, also derepressed transgene expression in non-hypertrophic chondrocytes. GLI2 and GLI3 bound to the Col10a1 regulatory element but not to the enhancer of Col2a1. In addition to Col10a1, paired SOX9–GLI binding motifs are present in the conserved non-coding regions of several genes that are preferentially expressed in hypertrophic chondrocytes and the occurrence of pairing is unlikely to be by chance. We propose a regulatory paradigm whereby direct concomitant positive and negative transcriptional control by SOX9 ensures differentiation phase-specific gene expression in chondrocytes. Discrimination between these opposing modes of transcriptional control by SOX9 may be mediated by cooperation with different partners such as GLI factors

    Study on physio-chemical properties of plasma polymerization in C2H2/N2 plasma and their impact on COL X

    Get PDF
    Nitrogen-containing plasma polymerization is of considerable interest for tissue engineering due to their properties on cell adhesion and mesenchymal stem cells (MSCs) response. In this study, low-pressure RF plasma of acetylene and nitrogen was used to deposit nitrogen-containing plasma polymerized coatings on several substrates. Deposition kinetics and surface characteristics of coatings were investigated in terms of RF power and gas flow ratio. OES was used to monitor the plasma process and investigate the relation between the film structure and plasma species. Presence of several bonds and low concentration of amine functional groups were determined using FTIR and Colorimetric methods. Contact angle goniometry results indicated about 30% increase in surface hydrophilicity. Stability of coatings in air and two different liquid environments was examined by repeating surface free energy measurements. Deposited films exhibited acceptable stability during the storage duration. Surface roughness measured by AFM was found to decrease with growing concentration of nitrogen. The deposition rate increased with increasing RF power and decreased with growing concentration of nitrogen. Zeta potential measurements of coatings revealed the negative potential on the surface of the thin films. Temporary suppression of collagen X in the presence of plasma coatings was confirmed by RT-PCR results

    c-Maf Transcription Factor Regulates ADAMTS-12 Expression in Human Chondrogenic Cells.

    Get PDF
    ObjectiveADAMTS (a disintegrin and metalloproteinase with thrombospondin type-1 motif) zinc metalloproteinases are important during the synthesis and breakdown of cartilage extracellular matrix. ADAMTS-12 is up-regulated during in vitro chondrogenesis and embryonic limb development; however, the regulation of ADAMTS-12 expression in cartilage remains unknown. The transcription factor c-Maf is a member of Maf family of basic ZIP (bZIP) transcription factors. Expression of c-Maf is highest in hypertrophic chondrocytes during embryonic development and postnatal growth. We hypothesize that c-Maf and ADAMTS-12 are co-expressed during chondrocyte differentiation and that c-Maf regulates ADAMTS-12 expression during chondrogenesis.DesignPromoter analysis and species alignments identified potential c-Maf binding sites in the ADAMTS-12 promoter. c-Maf and ADAMTS-12 co-expression was monitored during chondrogenesis of stem cell pellet cultures. Luciferase expression driven by ADAMTS-12 promoter segments was measured in the presence and absence of c-Maf, and synthetic oligonucleotides were used to confirm specific binding of c-Maf to ADAMTS-12 promoter sequences.ResultsIn vitro chondrogenesis from human mesenchymal stem cells revealed co-expression of ADAMTS-12 and c-Maf during differentiation. Truncation and point mutations of the ADAMTS-12 promoter evaluated in reporter assays localized the response to the proximal 315 bp of the ADAMTS-12 promoter, which contained a predicted c-Maf recognition element (MARE) at position -61. Electorphoretic mobility shift assay confirmed that c-Maf directly interacted with the MARE at position -61.ConclusionsThese data suggest that c-Maf is involved in chondrocyte differentiation and hypertrophy, at least in part, through the regulation of ADAMTS-12 expression at a newly identified MARE in its proximal promoter

    The chondro-osseous continuum: is it possible to unlock the potential assigned within?

    Get PDF
    Endochondral ossification (EO), by which long bones of the axial skeleton form, is a tightly regulated process involving chondrocyte maturation with successive stages of proliferation, maturation, and hypertrophy, accompanied by cartilage matrix synthesis, calcification, and angiogenesis, followed by osteoblast-mediated ossification. This developmental sequence reappears during fracture repair and in osteoarthritic etiopathology. These similarities suggest that EO, and the cells involved, are of great clinical importance for bone regeneration as it could provide novel targeted approaches to increase specific signaling to promote fracture healing, and if regulated appropriately in the treatment of osteoarthritis. The long-held accepted dogma states that hypertrophic chondrocytes are terminally differentiated and will eventually undergo apoptosis. In this mini review, we will explore recent evidence from experiments that revisit the idea that hypertrophic chondrocytes have pluripotent capacity and may instead transdifferentiate into a specific sub-population of osteoblast cells. There are multiple lines of evidence, including our own, showing that local, selective alterations in cartilage extracellular matrix (ECM) remodeling also indelibly alter bone quality. This would be consistent with the hypothesis that osteoblast behavior in long bones is regulated by a combination of their lineage origins and the epigenetic effects of chondrocyte-derived ECM which they encounter during their recruitment. Further exploration of these processes could help to unlock potential novel targets for bone repair and regeneration and in the treatment of osteoarthritis