1,603 research outputs found
Wireless industrial monitoring and control networks: the journey so far and the road ahead
While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks
Data Transmission with Reduced Delay for Distributed Acoustic Sensors
This paper proposes a channel access control scheme fit to dense acoustic
sensor nodes in a sensor network. In the considered scenario, multiple acoustic
sensor nodes within communication range of a cluster head are grouped into
clusters. Acoustic sensor nodes in a cluster detect acoustic signals and
convert them into electric signals (packets). Detection by acoustic sensors can
be executed periodically or randomly and random detection by acoustic sensors
is event driven. As a result, each acoustic sensor generates their packets
(50bytes each) periodically or randomly over short time intervals
(400ms~4seconds) and transmits directly to a cluster head (coordinator node).
Our approach proposes to use a slotted carrier sense multiple access. All
acoustic sensor nodes in a cluster are allocated to time slots and the number
of allocated sensor nodes to each time slot is uniform. All sensor nodes
allocated to a time slot listen for packet transmission from the beginning of
the time slot for a duration proportional to their priority. The first node
that detect the channel to be free for its whole window is allowed to transmit.
The order of packet transmissions with the acoustic sensor nodes in the time
slot is autonomously adjusted according to the history of packet transmissions
in the time slot. In simulations, performances of the proposed scheme are
demonstrated by the comparisons with other low rate wireless channel access
schemes.Comment: Accepted to IJDSN, final preprinted versio
A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks
In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs
Collision-free beacon scheduling mechanisms for IEEE 802.15.4/Zigbee cluster-tree wireless sensor networks
The recently standardized IEEE 802.15.4/Zigbee
protocol stack offers great potentials for ubiquitous and pervasive
computing, namely for Wireless Sensor Networks (WSNs).
However, there are still some open and ambiguous issues that turn
its practical use a challenging task. One of those issues is how to
build a synchronized multi-hop cluster-tree network, which is
quite suitable for QoS support in WSNs. In fact, the current IEEE
802.15.4/Zigbee specifications restrict the synchronization in the
beacon-enabled mode (by the generation of periodic beacon
frames) to star-based networks, while it supports multi-hop
networking using the peer-to-peer mesh topology, but with no
synchronization. Even though both specifications mention the
possible use of cluster-tree topologies, which combine multi-hop
and synchronization features, the description on how to effectively
construct such a network topology is missing. This paper tackles
this problem, unveils the ambiguities regarding the use of the
cluster-tree topology and proposes two collision-free beacon
frame scheduling schemes. We strongly believe that the results
provided in this paper trigger a significant step towards the
practical and efficient use of IEEE 802.15.4/Zigbee cluster-tree
networks
Beacon scheduling in cluster-tree IEEE 802.15.4/ZigBee wireless sensor networks
The recently standardized IEEE 802.15.4/Zigbee protocol stack offers great potentials for ubiquitous and
pervasive computing, namely for Wireless Sensor Networks (WSNs). However, there are still some open and
ambiguous issues that turn its practical use a challenging task. One of those issues is how to build a
synchronized multi-hop cluster-tree network, which is quite suitable for QoS support in WSNs. In fact, the
current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the
generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using
the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the
possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the
description on how to effectively construct such a network topology is missing. This report tackles this
problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes two collisionfree
beacon frame scheduling schemes
On the use of IEEE 802.15.4/ZigBee as federating communication protocols for Wireless Sensor Networks
Tese de mestrado. Redes e Serviços de Comunicação. Faculdade de Engenharia. Universidade do Porto, Instituto Superior de Engenharia. 200
Energy efficient scheduling for cluster-tree wireless sensor networks with time-bounded data flows: application to IEEE 802.15.4/ZigBee
Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks
(WSNs). The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism
based on the cyclic extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints)
problem for a cluster-tree WSN, assuming bounded communication errors. The objective is to meet all end-to-end
deadlines of a predefined set of time-bounded data flows while minimizing the energy consumption of the nodes by
setting the TDCS period as long as possible. Sinceeach cluster is active only once during the period, the end-to-end
delay of a given flow may span over several periods when there are the flows with opposite direction. The scheduling
tool enables system designers to efficiently configure all required parameters of the IEEE 802.15.4/ZigBee beaconenabled
cluster-tree WSNs in the network design time. The performance evaluation of thescheduling tool shows that the
problems with dozens of nodes can be solved while using optimal solvers
Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications
Wireless sensor networks monitor dynamic environments that change rapidly
over time. This dynamic behavior is either caused by external factors or
initiated by the system designers themselves. To adapt to such conditions,
sensor networks often adopt machine learning techniques to eliminate the need
for unnecessary redesign. Machine learning also inspires many practical
solutions that maximize resource utilization and prolong the lifespan of the
network. In this paper, we present an extensive literature review over the
period 2002-2013 of machine learning methods that were used to address common
issues in wireless sensor networks (WSNs). The advantages and disadvantages of
each proposed algorithm are evaluated against the corresponding problem. We
also provide a comparative guide to aid WSN designers in developing suitable
machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial
Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks
Future wireless networks have a substantial potential in terms of supporting
a broad range of complex compelling applications both in military and civilian
fields, where the users are able to enjoy high-rate, low-latency, low-cost and
reliable information services. Achieving this ambitious goal requires new radio
techniques for adaptive learning and intelligent decision making because of the
complex heterogeneous nature of the network structures and wireless services.
Machine learning (ML) algorithms have great success in supporting big data
analytics, efficient parameter estimation and interactive decision making.
Hence, in this article, we review the thirty-year history of ML by elaborating
on supervised learning, unsupervised learning, reinforcement learning and deep
learning. Furthermore, we investigate their employment in the compelling
applications of wireless networks, including heterogeneous networks (HetNets),
cognitive radios (CR), Internet of things (IoT), machine to machine networks
(M2M), and so on. This article aims for assisting the readers in clarifying the
motivation and methodology of the various ML algorithms, so as to invoke them
for hitherto unexplored services as well as scenarios of future wireless
networks.Comment: 46 pages, 22 fig
A Comprehensive Analysis of Literature Reported Mac and Phy Enhancements of Zigbee and its Alliances
Wireless communication is one of the most required technologies by the common man. The strength of this technology is rigorously progressing towards several novel directions in establishing personal wireless networks mounted over on low power consuming systems. The cutting-edge communication technologies like bluetooth, WIFI and ZigBee significantly play a prime role to cater the basic needs of any individual. ZigBee is one such evolutionary technology steadily getting its popularity in establishing personal wireless networks which is built on small and low-power digital radios. Zigbee defines the physical and MAC layers built on IEEE standard. This paper presents a comprehensive survey of literature reported MAC and PHY enhancements of ZigBee and its contemporary technologies with respect to performance, power consumption, scheduling, resource management and timing and address binding. The work also discusses on the areas of ZigBee MAC and PHY towards their design for specific applications
- …