164,704 research outputs found
Incorporation in vitro of labeled amino acids into bone marrow cell proteins
Nearly all experiments on the incorporation of labeled amino acids into tissue proteins in vitro have been done on tissues whose cell structure has been partially or completely disintegrated, e.g. tissue slices, segments, or homogenates. Since cell destruction reduces or abolishes the uptake of labeled amino acids (1), it seemed worth while to carry out studies on intact cells in vitro. Bone marrow cells were found to be suitable for this purpose. The labeled amino acids used were glycine-1-C14, L-leucine-1-C14, L-lysine-1-C14, and L-lysine-6-C14
The incorporation of labeled lysine into the proteins of guinea pig liver homogenate
When C14-labeled lysine is incubated with guinea pig liver homogenate, α-aminoadipic, α-ketoadipic, and glutaric acids are formed from the lysine (1). These transformations were established by finding the radioactivity of the C14 tracer in the metabolic products. The homogenate proteins coagulated by boiling at pH 5 also contained radioactivity. The counts given by the proteins corresponded to about 0.02 to 0.03 per cent of that added as lysine; the extent of lysine incorporation into the proteins was of the same order of magnitude as Melchior and Tarver (2) had found after incubating S35-labeled methionine and Winnick et al. (3, 4) C14-labeled glycine with rat tissue homogenates. Yet we could not satisfy ourselves that the radioactivity remaining in the proteins in our experiments, although it persisted through exhaustive extraction, did not come from traces of adsorbed radioactive lysine. Some counts were found in the protein when the homogenate was boiled prior to incubation with isotopic lysine
5-Hydroxyethyl-3-tetradecanoyltetramic acid represents a novel treatment for intravascular catheter infections due to Staphylococcus aureus
Objectives: Biofilm infections of intravascular catheters caused by Staphylococcus aureus may be treated with catheter lock solutions (CLSs). Here we investigated the antibacterial activity, cytotoxicity and CLS potential of 5-hydroxyethyl-3-tetradecanoyltetramic acid (5HE-C14-TMA) compared with the related compounds 3-tetradecanoyltetronic (C14-TOA) and 3-tetradecanoylthiotetronic (C14-TTA), which are variants of quorum sensing signalling molecules produced by Pseudomonas aeruginosa.
Methods: Antibacterial activity and mechanism of action of 5HE-C14-TMA, C14-TOA and C14-TTA were determined via MIC, bacterial killing, membrane potential and permeability assays. Susceptibility of S. aureus biofilms formed in the presence of plasma in vitro was investigated, MTT cytotoxicity testing was undertaken and cytokine release in human blood upon exposure to 5HE-C14-TMA and/or S. aureus biofilms was quantified. The effectiveness of 5HE-C14-TMA as CLS therapy in vivo was assessed using a rat intravascular catheter biofilm infection model.
Results: MICs of 5HE-C14-TMA, C14-TOA and C14-TTA ranged from 2 to 4 mg/L. 5HE-C14-TMA and C14-TTA were bactericidal; all three compounds perturbed the staphylococcal membrane by increasing membrane permeability, depolarized the transmembrane potential and caused ATP leakage. Cytotoxicity and haemolytic activity were compound and target cell type-dependent. 5HE-C14-TMA reduced S. aureus biofilm viability in a dose-dependent manner in vitro and in vivo and did not trigger release of cytokines in human blood, but inhibited the high levels of IL-8 and TNF-α induced by S. aureus biofilms.
Conclusions: 5HE-C14-TMA, C14-TOA and C14-TTA are membrane-active agents. 5HE-C14-TMA was the most potent, eradicating S. aureus biofilms at 512–1024 mg/L both in vitro and in vivo as a CLS
A new polymorphic material? Structural degeneracy of ZrMn_2
Based on density functional calculations, we propose that ZrMn_2 is a
polymorphic material. We predict that at low temperatures the cubic C15, and
the hexagonal C14 and C36 structures of the Laves phase compound ZrMn_2 are
nearly equally stable within 0.3 kJmol^{-1} or 30 K. This degeneracy occurs
when the Mn atoms magnetize spontaneously in a ferromagnetic arrangement
forming the states of lowest energy. From the temperature dependent free
energies at T approx 160K we predict a transition from the most stable C15 to
the C14 structure, which is the experimentally observed structure at elevated
temperatures.Comment: 4 pages, 3 figure
Learning to distinguish hypernyms and co-hyponyms
This work is concerned with distinguishing different semantic relations which exist between distributionally similar words. We compare a novel approach based on training a linear Support Vector Machine on pairs of feature vectors with state-of-the-art methods based on distributional similarity. We show that the new supervised approach does better even when there is minimal information about the target words in the training data, giving a 15% reduction in error rate over unsupervised approaches
Can Radiocarbon Dating Fit a Biblical Timescale?
Abstract
The trace amounts of C14 in ancient human bones imply that these people died up to 50 thousand years ago. This assumes that the concentration of C14 in the atmosphere has remained constant at today\u27s concentration. Such ages are incompatible with the record of Genesis which places Noah’s Flood about 4500 years ago, less than one half-life for C14. The trace amounts of C14 in coals buried by the Flood show that the atmospheric concentration of C14 at the time of the Flood was about 1% of today’s concentration. So C14 can be used to date ancient carbon using a biblical timescale. Here, the C14 calibration curve (“IntCal20”), based on tree ring chronologies, is recalibrated according to the C14 content of these ancient carbons: 1. coals buried in the Flood (2500 BC), 2. people in the Allen Ancient DNA Resource (AADR) who died in the Neolithic Decline (the Joseph famine of 1875 BC) and 3. tree rings from 1000 BC. By this recalibration, the secular timescale of 50 thousand years encompassing the late Pleistocene and the Stone Age becomes 1500 years from the Flood to 1000 BC. Using this biblical C14 timescale, the post-Babel settlement of Europe is revealed in the human fossil record of the AADR
The conversion of L-histidine to glutamic acid by liver enzymes
Edlbacher and Neber (1) showed in 1934 that the liver enzyme named histidase degrades histidine to NH3, formic acid, and an unknown product which on further treatment with strong alkali yields glutamic acid. This led to the suggestion that glutamic acid is a metabolic product of histidine, a suggestion that was supported by the finding that glycogen was formed from histidine about as well as from glutamic acid (2). These findings did not prove that glutamic acid was one of the products of histidine metabolism, and the idea became questionable when the evidence from subsequent investigations with non-isotopic histidine (3), imidazole-N16-histidine (4), and carboxyl-C14-histidine (5) were negative or inconclusive.
In studies on the fate of carboxyl-C14-L-histidine in the liver of rabbits after injection and after incubation with guinea pig liver slices, we have found direct evidence that glutamic acid is a major product of histdine metabolism. Another highly radioactive compound was isolated by ion exchange chromatography, whose properties with respect to chromatography and lability to alkali and acid appear to correspond to those reported for isoglutamine. Takeuchi (6) isolated and identified isoglutamine as a product of the action of urocanicase on urocanic acid, which was obtained by the action of another liver enzyme on histidine. The formation of isoglutamine as an intermediate is consistent with our finding that the label in the radioactive glutamic acid formed from carboxyl-C14-histidine is not in the α-carboxyl group, and the inference is very strong that the label is in the γ-carboxyl group
Distinctive growth and transcriptional changes of the diatom Seminavis robusta in response to quorum sensing related compounds
In aquatic habitats, diatoms are frequently found in association with Proteobacteria, many members of which employ cell-to-cell communication via N-acyl homoserine lactones (AHLs). It has been suggested that diatoms could distinguish between beneficial and algicidal bacteria in their surroundings by sensing AHLs. Although some microalgae can interfere with AHL signaling, e.g., by releasing AHL mimics or degrading them, molecular responses to AHLs in microalgae are still unclear. Therefore, we tested the effects of short-chained AHLs, i.e., N-hexanoyl homoserine lactone (C6-HSL), N-3-hydroxyhexanoyl homoserine lactone (OH-C6-HSL), and N-3-oxohexanoyl homoserine lactone (oxo-C6-HSL) and long-chained AHLs, i.e., N-tetradecanoyl homoserine lactone (C14-HSL), N-3-hydroxytetradecanoyl homoserine lactone (OH-C14-HSL), and N-3-oxotetradecanoyl homoserine lactone (oxo-C14-HSL), on growth of the benthic diatom Seminavis robusta. All tested short-chained AHLs did not affect diatom growth, while long-chained AHLs promoted (C14-HSL) or inhibited (OH-C14-HSL and oxo-C14-HSL) growth. To investigate the physiological effects of these long-chained AHLs in more detail, an RNA-seq experiment was performed during which S. robusta was treated with the growth-promoting C14-HSL and the growth-inhibiting oxo-C14-HSL. One tetramic acid was also tested (TA14), a structural rearrangement product of oxo-C14-HSL, which also induced growth inhibition in S. robusta. After 3 days of treatment, analysis revealed that 3,410 genes were differentially expressed in response to at least one of the compounds. In the treatment with the growth-promoting C14-HSL many genes involved in intracellular signaling were upregulated. On the other hand, exposure to growth-inhibiting oxo-C14-HSL and TA14 triggered a switch in lipid metabolism towards increased fatty acid degradation. In addition, oxo-C14-HSL led to downregulation of cell cycle genes, which is in agreement with the stagnation of cell growth in this treatment. Combined, our results indicate that bacterial signaling molecules with high structural similarity induce contrasting physiological responses in S. robusta
Effect of Cblin and celastrol on muscle atrophy
Two novel reagents, N-myristoylated Cbl-b inhibitory peptide (C14-Cblin) and celastrol, a quinone methide triterpene, are reported to be effective in preventing myotube atrophy. The combined effects of C14-Cblin and celastrol on rat L6 myotubes atrophy induced by 3D-clinorotation, a simulated microgravity model, was investigated in the present study. We first examined their effects on expression in atrogenes. Increase in MAFbx1/atrogin-1 and MuRF-1 by 3D-clinorotation was significantly suppressed by treatment with C14-Cblin or celastrol, but there was no additive effect of simultaneous treatment. However, celastrol significantly suppressed the upregulation of Cbl-b and HSP70 by 3D-clinorotation. Whereas 3D-clinorotation decreased the protein level of IRS-1 in L6 myotubes, C14-Cblin and celastrol inhibited the degradation of IRS-1. C14-Cblin and celastrol promoted the phosphorylation of FOXO3a even in microgravity condition. Simultaneous administration of C14-Cblin and celastrol had shown little additive effect in reversing the impairment of IGF-1 signaling by 3D-clinorotation. While 3D-clinorotation-induced marked oxidative stress in L6 myotubes, celastrol suppressed 3D-clinorotation-induced ROS production. Finally, the C14-Cblin and celastrol-treated groups were inhibited decrease in L6 myotube diameter and increased the protein content of slow-twitch MyHC cultured under 3D-clinorotation. The simultaneous treatment of C14-Cblin and celastrol additively prevented 3D-clinorotation-induced myotube atrophy than single treatment
- …