12,974 research outputs found

    A molecular timetable for apical bud formation and dormancy induction in poplar

    Get PDF
    The growth of perennial plants in the temperate zone alternates with periods of dormancy that are typically initiated during bud development in autumn. In a systems biology approach to unravel the underlying molecular program of apical bud development in poplar (Populus tremula 3 Populus alba), combined transcript and metabolite profiling were applied to a high-resolution time course from short-day induction to complete dormancy. Metabolite and gene expression dynamics were used to reconstruct the temporal sequence of events during bud development. Importantly, bud development could be dissected into bud formation, acclimation to dehydration and cold, and dormancy. To each of these processes, specific sets of regulatory and marker genes and metabolites are associated and provide a reference frame for future functional studies. Light, ethylene, and abscisic acid signal transduction pathways consecutively control bud development by setting, modifying, or terminating these processes. Ethylene signal transduction is positioned temporally between light and abscisic acid signals and is putatively activated by transiently low hexose pools. The timing and place of cell proliferation arrest (related to dormancy) and of the accumulation of storage compounds (related to acclimation processes) were established within the bud by electron microscopy. Finally, the identification of a large set of genes commonly expressed during the growth-to-dormancy transitions in poplar apical buds, cambium, or Arabidopsis thaliana seeds suggests parallels in the underlying molecular mechanisms in different plant organs

    Dormancy and bud burst in Sultana vines

    Get PDF
    Dormancy and bud burst have been studied for sultana vines in the Murray Valley, Australia. The vines are in deep dormancy at the beginning of autumn and the intensity of dormancy decreases gradually during autumn and winter. Bud burst of cuttings taken during the dormant period occurs the more rapidly the higher the temperature at which they are held. There is evidence to suggest that sultanas have no chilling requirement and no clear distinction between organic and enforced dormancy. Treatment with 3 ml of ethylene chlorhydrin in a.201 container for 24 hours is effective in breaking dormancy. The most effective treatment veries slightly with the intensity of dormancy. Removing the outer bud scales or soaking buds in water decreases the intensity of dormancy. The pattern of bud burst found on canes in the field is established on pruned canes at least one month before the shoots appear. Both auxin and gibberellin will delay bud burst and reduce the proportion of buds which burst but auxin will not affect a bud above the point of application whereas gibberellin will do so

    Short Day Transcriptomic Programming During Induction of Dormancy in Grapevine

    Get PDF
    Bud dormancy in grapevine is an adaptive strategy for the survival of drought, high and low temperatures and freeze dehydration stress that limit the range of cultivar adaptation. Therefore, development of a comprehensive understanding of the biological mechanisms involved in bud dormancy is needed to promote advances in selection and breeding, and to develop improved cultural practices for existing grape cultivars. The seasonally indeterminate grapevine, which continuously develops compound axillary buds during the growing season, provides an excellent system for dissecting dormancy, because the grapevine does not transition through terminal bud development prior to dormancy. This study used gene expression patterns and targeted metabolite analysis of two grapevine genotypes that are short photoperiod responsive (Vitis riparia) and non-responsive (V. hybrid, Seyval) for dormancy development to determine differences between bud maturation and dormancy commitment. Grapevine gene expression and metabolites were monitored at seven time points under long (LD, 15 h) and short (SD, 13 h) day treatments. The use of age-matched buds and a small (2 h) photoperiod difference minimized developmental differences and allowed us to separate general photoperiod from dormancy specific gene responses. Gene expression profiles indicated three distinct phases (perception, induction and dormancy) in SD-induced dormancy development in V. riparia. Different genes from the NAC DOMAIN CONTAINING PROTEIN 19 and WRKY families of transcription factors were differentially expressed in each phase of dormancy. Metabolite and transcriptome analyses indicated ABA, trehalose, raffinose and resveratrol compounds have a potential role in dormancy commitment. Finally, a comparison between V. riparia compound axillary bud dormancy and dormancy responses in other species emphasized the relationship between dormancy and the expression of RESVERATROL SYNTHASE and genes associated with C3HC4-TYPE RING FINGER and NAC DOMAIN CONTAINING PROTEIN 19 transcription factors

    Warming Events Advance or Delay Spring Phenology by Affecting Bud Dormancy Depth in Trees

    Get PDF
    The frequency of sudden, strong warming events is projected to increase in the future. The effects of such events on spring phenology of trees might depend on their timing because spring warming has generally been shown to advance spring budburst while fall and winter warming have been shown to delay spring phenology. To understand the mechanism behind timing-specific warming effects on spring phenology, I simulated warming events during fall, mid-winter and at the end of winter and quantified their effects on bud dormancy depth and subsequently on spring leaf out. The warming events were carried out in climate chambers on tree seedlings of Betula pendula and Fagus sylvatica in October, January, and February. Control seedlings were kept at photoperiod and temperature matching the daily fluctuating field conditions. Warmed seedlings were kept 10°C warmer than the control seedlings for 10 days during the respective warming periods. Warming in October increased bud dormancy depth and decreased spring leaf-out rate only for F. sylvatica, whereas warming in February reduced bud dormancy depth and advanced spring leaf-out rate only for B. pendula. Neither bud dormancy depth nor spring leaf out rate were affected by January warming. The results indicate that warming-induced changes in bud dormancy depth may explain species- and timing-specific warming effects on spring phenology. The extent to which the timing of bud dormancy phases is species-specific will influence among-species variation in future spring leaf out times

    Verbetering trekresultaten van vroege trek bij Viburnum opulus "Roseum" (sneeuwbal): Onderzoek naar bloemknopontwikkeling en koubehoefte voor rustdoorbreking

    Get PDF
    Abstract In the early forcing of Viburnum opulus 'Roseum' (Snowball), results are sometimes disappointing: only a few or sometimes none of the buds develop into inflorescences, or so-called 'grass balls' emerge. At the request of the growers and with funding from the Horticulture Board, Wageningen UR Greenhouse Horticulture, explored flower bud development in Viburnum. The starting time of flower bud development varies. An early start leads to a high number of flower buds per branch. After the development of the flower buds, they go into winter dormancy. Problems with development to inflorescences are due to lack of cold for breaking bud dormancy. Viburnum needs 900 hours of 2 to 8 oC to break bud dormancy. ‘Grass Balls’ are caused by incomplete flower bud development. If the flowers in an inflorescence are not or incompletely developed, small green leaves grow from the inflorescence

    The MADS-box gene MdDAM1 controls growth cessation and bud dormancy in apple

    Get PDF
    7openInternationalInternational coauthor/editorApple trees require a long exposure to chilling temperature during winter to acquire competency to flower and grow in the following spring. Climate change or adverse meteorological conditions can impair release of dormancy and delay bud break, hence jeopardizing fruit production and causing substantial economic losses. In order to characterize the molecular mechanisms controlling bud dormancy in apple we focused our work on the MADS-box transcription factor gene MdDAM1. We show that MdDAM1 silencing is required for the release of dormancy and bud break in spring. MdDAM1 transcript levels are drastically reduced in the low-chill varieties ‘Anna’ and ‘Dorsett Golden’ compared to ‘Golden Delicious’ corroborating its role as a key genetic factor controlling the release of bud dormancy in Malus species. The functional characterization of MdDAM1 using RNA silencing resulted in trees unable to cease growth in winter and that displayed an evergrowing, or evergreen, phenotype several years after transgenesis. These trees lost their capacity to enter in dormancy and produced leaves and shoots regardless of the season. A transcriptome study revealed that apple evergrowing lines are a genocopy of ‘Golden Delicious’ trees at the onset of the bud break with the significant gene repression of the related MADS-box gene MdDAM4 as a major feature. We provide the first functional evidence that MADS-box transcriptional factors are key regulators of bud dormancy in pome fruit trees and demonstrate that their silencing results in a defect of growth cessation in autumn. Our findings will help producing low-chill apple variants from the elite commercial cultivars that will withstand climate change.openMoser, M.; Asquini, E.; Miolli, G.V.; Weigl, K.; Hanke, M.V.; Flachowsky, H.; Si Ammour, A.Moser, M.; Asquini, E.; Miolli, G.V.; Weigl, K.; Hanke, M.V.; Flachowsky, H.; Si Ammour, A

    Planting date, storage and gibberellic acid affect dormancy of Zantedeschia Spreng. hybrids : a thesis presented in partial fulfilment of the requirements for the degree of Masters in Applied Science, Massey University, Palmerston North, New Zealand

    Get PDF
    To match the supply of Zantedeschia cut flowers and tubers to the demands of the international market, crops have to be timed to a schedule, which requires control of the growth cycle and, in particular, dormancy. In order to improve the predictability and accuracy of timing of Zantedeschia, the effect of different planting seasons and two dormancy-breaking treatments were tested on cultivars 'Black Magic' and 'Treasure', which were known to have a contrasting level of dormancy. Tissue-cultured plants were ex-flasked in July and November 1999, and grown for 180 days in a heated glasshouse (first cycle). Between 120 and 180 days of growth, plants were harvested at 15 days intervals, and tubers cured. Subsequently, tubers were stored for 0 or 3 weeks (10 ± 1°C; 70-80% RH) and dipped in 100 mg.L -1 gibberellic acid plus surfactant or water plus surfactant, prior to planting for dormancy assessment (second cycle). Growing the plants with four months difference in planting date did not cause major alteration in the occurrence of dormancy. Dormancy was brought forward by up to 10 days after the November date of ex-flask, but this was most likely to be due to higher temperatures during that period. In contrast, depth of dormancy varied between cultivars, with 'Black Magic' taking in average 16 days longer to emerge than 'Treasure'. Storage partially released bud dormancy of the tubers. It increased emergence to over 80% regardless of the time of harvest in the first cycle and cultivar, but reduced time to emergence mostly after harvests at 180 days. Furthermore, following storage, time to emergence was reduced to over 50 and 30 days for 'Black Magic' and 'Treasure', respectively, which exceeded the commercially acceptable period to emerge. Gibberellic acid also broke bud dormancy, improving emergence to over 80%, and reduced time to emergence to between 29 and 57 days, irrespective of the time of harvest in the first cycle and cultivar. The effectiveness of gibberellic acid at any time following harvest during the first cycle, may imply that dormancy of Zantedeschia is not as deep as in temperate woody plants. Cessation of leaf emergence in the first cycle was found not to be directly related to the occurrence of dormancy. Degree-days, on the other hand, presented a possible alternative to predict this process. It was estimated that deepest dormancy of 'Black Magic' occurred between 2614 and 2732 °C-days after planting, while deepest dormancy of 'Treasure' occurred between 2681 and 2839 °C-days after planting. The present study presents storage and gibberellic acid as possible options to control dormancy, and the use of degree-days to predict the occurrence of this process. Further research is necessary to develop these options as commercially applicable practices, and to further clarify the process of dormancy in Zantedeschia

    Structure and Expression of Bud Dormancy-Associated MADS-Box Genes (DAM) in European Plum

    Get PDF
    Bud dormancy in temperate perennials ensures the survival of growing meristems under the harsh environmental conditions of autumn and winter, and facilitates an optimal growth and development resumption in the spring. Although the molecular pathways controlling the dormancy process are still unclear, DORMANCY-ASSOCIATED MADS-BOX genes (DAM) have emerged as key regulators of the dormancy cycle in different species. In the present study, we have characterized the orthologs of DAM genes in European plum (Prunus domestica L.). Their expression patterns together with sequence similarities are consistent with a role of PdoDAMs in dormancy maintenance mechanisms in European plum. Furthermore, other genes related to dormancy, flowering, and stress response have been identified in order to obtain a molecular framework of these three different processes taking place within the dormant flower bud in this species. This research provides a set of candidate genes to be genetically modified in future research, in order to better understand dormancy regulation in perennial species

    Secondary and tertiary budbreak release is enhanced by extended dormancy chilling in 'Shiraz' grapevines

    Get PDF
    Limited information exists regarding the dormancy of secondary and tertiary buds within the compound bud of grapevines. We were interested to evaluate how extended chilling duration would affect the budbreak percentage of all three bud orders within the compound bud. Dormant potted 'Shiraz' grapevines, with thirty retained buds per vine, were placed in a cool room at 4 °C over a 20-month period to extend dormancy. Vines were then systematically removed over five dates and placed in a controlled growth environment to assess budbreak percentages and cane tissue concentrations of abscisic acid and cytokinins. Budbreak was hastened by at least 13 d with vines receiving any extra chilling compared to no initial chilling. Furthermore, the firstly observed correlative inhibition of basal buds was apparently removed with chilling. Removal of correlative inhibition within the compound bud with increased chilling duration was also observed with the increases of secondary (doubles) and tertiary (triples) buds breaking simultaneously with the primary bud at each node. This resulted in 91 % of the nodes having two developing shoots and 56 % of the nodes presenting three developing shoots by the end of the experiment. Furthermore, a sigmoidal relationship between percent secondary buds and chilling duration was observed. Possible phytohormone connections were observed with the decline of ABA as secondary and tertiary buds broke at 414 d of chilling and depletion of the CKs, which coincided with the greatest rate of primary bud break after 242 d of chilling. Other possible involvement of ABA and Cis-type cytokinin interactions with secondary and tertiary bud dormancy is discussed. The results suggest future investigations into secondary and tertiary bud release within the grapevine using similar techniques may help to better understand the biochemical mechanisms associated with dormancy

    Study on the morphological evolution of bud break in Vitis vinifera L.

    Get PDF
    The aims are to evaluate morpho-anatomical bud development during dormancy and to compare the heat requirement needed to start bud break in several grapevine cultivars characterised by different geographic origins. A detailed description is presented of the bud growth stages of Vitis vinifera cultivars to contribute to the standardisation of national and international testing systems of fruit growing. Based on the general BBCH-scale, the codes describe the first stages of budbreak in several cultivars with different geographical origins. Dormancy release was evaluated both under natural and forcing conditions, appropriate method to establish the budbreak of deciduous species. The cultivars were characterised in relation to the achievement of complete bud scale opening stage (03 of BBCH scale) which is suggested to consider as an early and indicator of budbreak.
    • …
    corecore