2,011 research outputs found

    On the works of Euler and his followers on spherical geometry

    Full text link
    We review and comment on some works of Euler and his followers on spherical geometry. We start by presenting some memoirs of Euler on spherical trigonometry. We comment on Euler's use of the methods of the calculus of variations in spherical trigonometry. We then survey a series of geometrical resuls, where the stress is on the analogy between the results in spherical geometry and the corresponding results in Euclidean geometry. We elaborate on two such results. The first one, known as Lexell's Theorem (Lexell was a student of Euler), concerns the locus of the vertices of a spherical triangle with a fixed area and a given base. This is the spherical counterpart of a result in Euclid's Elements, but it is much more difficult to prove than its Euclidean analogue. The second result, due to Euler, is the spherical analogue of a generalization of a theorem of Pappus (Proposition 117 of Book VII of the Collection) on the construction of a triangle inscribed in a circle whose sides are contained in three lines that pass through three given points. Both results have many ramifications, involving several mathematicians, and we mention some of these developments. We also comment on three papers of Euler on projections of the sphere on the Euclidean plane that are related with the art of drawing geographical maps.Comment: To appear in Ganita Bharati (Indian Mathematics), the Bulletin of the Indian Society for History of Mathematic

    Vector constants of the motion and orbits in the Coulomb/Kepler problem

    Full text link
    The equation for the conic sections describing the possible orbits in a potential V∌r−1V \sim r^{-1} is obtained by means of a vector constant of the motion differing from the traditional Laplace-Runge-Lenz vector.Comment: 5 pages, no figure

    Maty's Biography of Abraham De Moivre, Translated, Annotated and Augmented

    Full text link
    November 27, 2004, marked the 250th anniversary of the death of Abraham De Moivre, best known in statistical circles for his famous large-sample approximation to the binomial distribution, whose generalization is now referred to as the Central Limit Theorem. De Moivre was one of the great pioneers of classical probability theory. He also made seminal contributions in analytic geometry, complex analysis and the theory of annuities. The first biography of De Moivre, on which almost all subsequent ones have since relied, was written in French by Matthew Maty. It was published in 1755 in the Journal britannique. The authors provide here, for the first time, a complete translation into English of Maty's biography of De Moivre. New material, much of it taken from modern sources, is given in footnotes, along with numerous annotations designed to provide additional clarity to Maty's biography for contemporary readers.Comment: Published at http://dx.doi.org/10.1214/088342306000000268 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    From Logical Calculus to Logical Formality—What Kant Did with Euler’s Circles

    Get PDF
    John Venn has the “uneasy suspicion” that the stagnation in mathematical logic between J. H. Lambert and George Boole was due to Kant’s “disastrous effect on logical method,” namely the “strictest preservation [of logic] from mathematical encroachment.” Kant’s actual position is more nuanced, however. In this chapter, I tease out the nuances by examining his use of Leonhard Euler’s circles and comparing it with Euler’s own use. I do so in light of the developments in logical calculus from G. W. Leibniz to Lambert and Gottfried Ploucquet. While Kant is evidently open to using mathematical tools in logic, his main concern is to clarify what mathematical tools can be used to achieve. For without such clarification, all efforts at introducing mathematical tools into logic would be blind if not complete waste of time. In the end, Kant would stress, the means provided by formal logic at best help us to express and order what we already know in some sense. No matter how much mathematical notations may enhance the precision of this function of formal logic, it does not change the fact that no truths can, strictly speaking, be revealed or established by means of those notations

    Leonhard Eulers Wege zur Zahlentheorie

    Get PDF
    Eine chronologische und kontextualisierende Uebersicht der zahlentheoretischen Arbeiten Leonhard Euler

    A Tricentenary history of the Law of Large Numbers

    Full text link
    The Weak Law of Large Numbers is traced chronologically from its inception as Jacob Bernoulli's Theorem in 1713, through De Moivre's Theorem, to ultimate forms due to Uspensky and Khinchin in the 1930s, and beyond. Both aspects of Jacob Bernoulli's Theorem: 1. As limit theorem (sample size n→∞n\to\infty), and: 2. Determining sufficiently large sample size for specified precision, for known and also unknown p (the inversion problem), are studied, in frequentist and Bayesian settings. The Bienaym\'{e}-Chebyshev Inequality is shown to be a meeting point of the French and Russian directions in the history. Particular emphasis is given to less well-known aspects especially of the Russian direction, with the work of Chebyshev, Markov (the organizer of Bicentennial celebrations), and S.N. Bernstein as focal points.Comment: Published in at http://dx.doi.org/10.3150/12-BEJSP12 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    A catalog of the works of Jacob Hermann (1678–1733)

    Get PDF
    • 

    corecore