535 research outputs found

    The Promotoer: a successful story of translational research in BCI for motor rehabilitation

    Get PDF
    Several groups have recently demonstrated in the context of randomized controlled trials (RCTs) how sensorimotor Brain-Computer Interface (BCI) systems can be beneficial for post-stroke motor recovery. Following a successful RCT, at Fondazione Santa Lucia (FSL) a further translational effort was made with the implementation of the Promotœr, an all in-one BCIsupported MI training station. Up to now, 25 patients underwent training with the Promotɶr during their admission for rehabilitation purposes (in add-on to standard therapy). Two illustrative cases are presented. Though currently limited to FSL, the Promotɶr represents a successful story of translational research in BCI for stroke rehabilitation. Results are promising both in terms of feasibility of a BCI training in the context of a real rehabilitation program and in terms of clinical and neurophysiological benefits observed in the patients

    BCI-assisted training for upper limb motor rehabilitation: estimation of effects on individual brain connectivity and motor functions

    Get PDF
    The aim of the study is to quantify individual changes in scalp connectivity patterns associated to the affected hand movement in stroke patients after a 1-month training based on BCIsupported motor imagery to improve upper limb motor recovery. To perform the statistical evaluation between pre- and post-training conditions at the single subject level, a resampling approach was applied to EEG datasets acquired from 12 stroke patients during the execution of a motor task with the stroke affected hand before and after the rehabilitative intervention. Significant patterns of the network reinforced after the training were extracted and a significant correlation was found between indices related to the reinforced pattern and the clinical outcome indicated by clinical scales

    GUIDER: a GUI for semiautomatic, physiologically driven EEG feature selection for a rehabilitation BCI

    Get PDF
    GUIDER is a graphical user interface developed in MATLAB software environment to identify electroencephalography (EEG)-based brain computer interface (BCI) control features for a rehabilitation application (i.e. post-stroke motor imagery training). In this context, GUIDER aims to combine physiological and machine learning approaches. Indeed, GUIDER allows therapists to set parameters and constraints according to the rehabilitation principles (e.g. affected hemisphere, sensorimotor relevant frequencies) and foresees an automatic method to select the features among the defined subset. As a proof of concept, we compared offline performances between manual, just based on operator’s expertise and experience, and GUIDER semiautomatic features selection on BCI data collected from stroke patients during BCI-supported motor imagery training. Preliminary results suggest that this semiautomatic approach could be successfully applied to support the human selection reducing operator dependent variability in view of future multi-centric clinical trials

    Spatial filters selection towards a rehabilitation BCI

    Get PDF
    Introducing BCI technology in supporting motor imagery (MI) training has revealed the rehabilitative potential of MI, contributing to significantly better motor functional outcomes in stroke patients. To provide the most accurate and personalized feedback during the treatment, several stages of the electroencephalographic signal processing have to be optimized, including spatial filtering. This study focuses on data-independent approaches to optimize spatial filtering step. Specific aims were: i) assessment of spatial filters' performance in relation to the hand and foot scalp areas; ii) evaluation of simultaneous use of multiple spatial filters; iii) minimization of the number of electrodes needed for training. Our findings indicate that different spatial filters showed different performance related to the scalp areas considered. The simultaneous use of EEG signals conditioned with different spatial filters could either improve classification performance or, at same level of performance could lead to a reduction of the number of electrodes needed for successive training, thus improving usability of BCIs in clinical rehabilitation context

    Rehabilitative devices for a top-down approach

    Get PDF
    In recent years, neurorehabilitation has moved from a "bottom-up" to a "top down" approach. This change has also involved the technological devices developed for motor and cognitive rehabilitation. It implies that during a task or during therapeutic exercises, new "top-down" approaches are being used to stimulate the brain in a more direct way to elicit plasticity-mediated motor re-learning. This is opposed to "Bottom up" approaches, which act at the physical level and attempt to bring about changes at the level of the central neural system. Areas covered: In the present unsystematic review, we present the most promising innovative technological devices that can effectively support rehabilitation based on a top-down approach, according to the most recent neuroscientific and neurocognitive findings. In particular, we explore if and how the use of new technological devices comprising serious exergames, virtual reality, robots, brain computer interfaces, rhythmic music and biofeedback devices might provide a top-down based approach. Expert commentary: Motor and cognitive systems are strongly harnessed in humans and thus cannot be separated in neurorehabilitation. Recently developed technologies in motor-cognitive rehabilitation might have a greater positive effect than conventional therapies

    Integrating EEG and MEG signals to improve motor imagery classification in brain-computer interfaces

    Full text link
    We propose a fusion approach that combines features from simultaneously recorded electroencephalographic (EEG) and magnetoencephalographic (MEG) signals to improve classification performances in motor imagery-based brain-computer interfaces (BCIs). We applied our approach to a group of 15 healthy subjects and found a significant classification performance enhancement as compared to standard single-modality approaches in the alpha and beta bands. Taken together, our findings demonstrate the advantage of considering multimodal approaches as complementary tools for improving the impact of non-invasive BCIs

    Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis

    Get PDF
    The use of Brain-Computer Interface (BCI) technology in neurorehabilitation provides new strategies to overcome stroke-related motor limitations. Recent studies demonstrated the brain's capacity for functional and structural plasticity through BCI. However, it is not fully clear how we can take full advantage of the neurobiological mechanisms underlying recovery and how to maximize restoration through BCI. In this study we investigate the role of multimodal virtual reality (VR) simulations and motor priming (MP) in an upper limb motor-imagery BCI task in order to maximize the engagement of sensory-motor networks in a broad range of patients who can benefit from virtual rehabilitation training.info:eu-repo/semantics/publishedVersio

    Induction of Neural Plasticity Using a Low-Cost Open Source Brain-Computer Interface and a 3D-Printed Wrist Exoskeleton

    Get PDF
    Brain-computer interfaces (BCIs) have been proven to be useful for stroke rehabilitation, but there are a number of factors that impede the use of this technology in rehabilitation clinics and in home-use, the major factors including the usability and costs of the BCI system. The aims of this study were to develop a cheap 3D-printed wrist exoskeleton that can be controlled by a cheap open source BCI (OpenViBE), and to determine if training with such a setup could induce neural plasticity. Eleven healthy volunteers imagined wrist extensions, which were detected from single-trial electroencephalography (EEG), and in response to this, the wrist exoskeleton replicated the intended movement. Motor-evoked potentials (MEPs) elicited using transcranial magnetic stimulation were measured before, immediately after, and 30 min after BCI training with the exoskeleton. The BCI system had a true positive rate of 86 ± 12% with 1.20 ± 0.57 false detections per minute. Compared to the measurement before the BCI training, the MEPs increased by 35 ± 60% immediately after and 67 ± 60% 30 min after the BCI training. There was no association between the BCI performance and the induction of plasticity. In conclusion, it is possible to detect imaginary movements using an open-source BCI setup and control a cheap 3D-printed exoskeleton that when combined with the BCI can induce neural plasticity. These findings may promote the availability of BCI technology for rehabilitation clinics and home-use. However, the usability must be improved, and further tests are needed with stroke patients
    corecore