229 research outputs found

    JMT – Performance Engineering Tools for System Modeling

    Get PDF
    We present the Java Modelling Tools (JMT) suite, an integrated framework of Java tools for performance evaluation of computer systems using queueing models. The suite offers a rich user interface that simplifies the definition of performance models by means of wizard dialogs and of a graphical design workspace. The performance evaluation features of JMT span a wide range of state-of-the-art methodologies including discrete-event simulation, mean value analysis of product-form networks, analytical identification of bottleneck resources in multiclass environments, and workload characterization with fuzzy clustering. The discrete-event simulator supports several advanced modeling features such as finite capacity regions, load-dependent service times, bursty processes, fork-and-join nodes, and implements spectral estimation for analysis of simulative results. The suite is open-source, released under the GNU general public license (GPL), and it is available for free download at http://jmt.sourceforge.net

    Branching processes, the max-plus algebra and network calculus

    Get PDF
    Branching processes can describe the dynamics of various queueing systems, peer-to-peer systems, delay tolerant networks, etc. In this paper we study the basic stochastic recursion of multitype branching processes, but in two non-standard contexts. First, we consider this recursion in the max-plus algebra where branching corresponds to finding the maximal offspring of the current generation. Secondly, we consider network-calculus-type deterministic bounds as introduced by Cruz, which we extend to handle branching-type processes. The paper provides both qualitative and quantitative results and introduces various applications of (max-plus) branching processes in queueing theory

    GPS queues with heterogeneous traffic classes

    Get PDF
    We consider a queue fed by a mixture of light-tailed and heavy-tailed traffic. The two traffic classes are served in accordance with the generalized processor sharing (GPS) discipline. GPS-based scheduling algorithms, such as weighted fair queueing (WFQ), have emerged as an important mechanism for achieving service differentiation in integrated networks. We derive the asymptotic workload behavior of the light-tailed class for the situation where its GPS weight is larger than its traffic intensity. The GPS mechanism ensures that the workload is bounded above by that in an isolated system with the light-tailed class served in isolation at a constant rate equal to its GPS weight. We show that the workload distribution is in fact asymptotically equivalent to that in the isolated system, multiplied with a certain pre-factor, which accounts for the interaction with the heavy-tailed class. Specifically, the pre-factor represents the probability that the heavy-tailed class is backlogged long enough for the light-tailed class to reach overflow. The results provide crucial qualitative insight in the typical overflow scenario

    Characterizing the impact of the workload on the value of dynamic resizing in data centers

    Get PDF
    Energy consumption imposes a significant cost for data centers; yet much of that energy is used to maintain excess service capacity during periods of predictably low load. Resultantly, there has recently been interest in developing designs that allow the service capacity to be dynamically resized to match the current workload. However, there is still much debate about the value of such approaches in real settings. In this paper, we show that the value of dynamic resizing is highly dependent on statistics of the workload process. In particular, both slow time-scale non-stationarities of the workload (e.g., the peak-to-mean ratio) and the fast time-scale stochasticity (e.g., the burstiness of arrivals) play key roles. To illustrate the impact of these factors, we combine optimization-based modeling of the slow time-scale with stochastic modeling of the fast time-scale. Within this framework, we provide both analytic and numerical results characterizing when dynamic resizing does (and does not) provide benefits

    Performance analysis of queueing networks via robust optimization

    Get PDF
    Performance analysis of queueing networks is one of the most challenging areas of queueing theory. Barring very specialized models such as product-form type queueing networks, there exist very few results that provide provable nonasymptotic upper and lower bounds on key performance measures. In this paper we propose a new performance analysis method, which is based on the robust optimization. The basic premise of our approach is as follows: rather than assuming that the stochastic primitives of a queueing model satisfy certain probability laws—such as i.i.d. interarrival and service times distributions—we assume that the underlying primitives are deterministic and satisfy the implications of such probability laws. These implications take the form of simple linear constraints, namely, those motivated by the law of the iterated logarithm (LIL). Using this approach we are able to obtain performance bounds on some key performance measures. Furthermore, these performance bounds imply similar bounds in the underlying stochastic queueing models. We demonstrate our approach on two types of queueing networks: (a) tandem single-class queueing network and (b) multiclass single-server queueing network. In both cases, using the proposed robust optimization approach, we are able to obtain explicit upper bounds on some steady-state performance measures. For example, for the case of TSC system we obtain a bound of the form C(1 – {rho})–1 ln ln((1 – {rho})–1) [C(1-p) superscript -1 ln ln ((1 - p) superscript -1)]on the expected steady-state sojourn time, where C is an explicit constant and {rho} is the bottleneck traffic intensity. This qualitatively agrees with the correct heavy traffic scaling of this performance measure up to the ln ln((1 – {rho})–1) [ln ln((1 - p) superscript -1)] correction factor.National Science Foundation (U.S.) (Grant DMI-0556106)National Science Foundation (U.S.) (Grant CMMI-0726733

    Stochastic bounds in fork-join queueing systems under full and partial mapping

    Get PDF
    In a Fork-Join (FJ) queueing system an upstream fork station splits incoming jobs into N tasks to be further processed by N parallel servers, each with its own queue; the response time of one job is determined, at a downstream join station, by the maximum of the corresponding tasks’ response times. This queueing system is useful to the modelling of multi-service systems subject to synchronization constraints, such as MapReduce clusters or multipath routing. Despite their apparent simplicity, FJ systems are hard to analyze. This paper provides the first computable stochastic bounds on the waiting and response time distributions in FJ systems under full (bijective) and partial (injective) mapping of tasks to servers. We consider four practical scenarios by combining 1a) renewal and 1b) non-renewal arrivals, and 2a) non-blocking and 2b) blocking servers. In the case of non-blocking servers we prove that delays scale as O(log N), a law which is known for first moments under renewal input only. In the case of blocking servers, we prove that the same factor of log N dictates the stability region of the system. Simulation results indicate that our bounds are tight, especially at high utilizations, in all four scenarios. A remarkable insight gained from our results is that, at moderate to high utilizations, multipath routing “makes sense” from a queueing perspective for two paths only, i.e., response times drop the most when N = 2; the technical explanation is that the resequencing (delay) price starts to quickly dominate the tempting gain due to multipath transmissions

    Computable bounds in fork-join queueing systems

    Get PDF
    In a Fork-Join (FJ) queueing system an upstream fork station splits incoming jobs into N tasks to be further processed by N parallel servers, each with its own queue; the response time of one job is determined, at a downstream join station, by the maximum of the corresponding tasks' response times. This queueing system is useful to the modelling of multi-service systems subject to synchronization constraints, such as MapReduce clusters or multipath routing. Despite their apparent simplicity, FJ systems are hard to analyze. This paper provides the first computable stochastic bounds on the waiting and response time distributions in FJ systems. We consider four practical scenarios by combining 1a) renewal and 1b) non-renewal arrivals, and 2a) non-blocking and 2b) blocking servers. In the case of non blocking servers we prove that delays scale as O(logN), a law which is known for first moments under renewal input only. In the case of blocking servers, we prove that the same factor of log N dictates the stability region of the system. Simulation results indicate that our bounds are tight, especially at high utilizations, in all four scenarios. A remarkable insight gained from our results is that, at moderate to high utilizations, multipath routing 'makes sense' from a queueing perspective for two paths only, i.e., response times drop the most when N = 2; the technical explanation is that the resequencing (delay) price starts to quickly dominate the tempting gain due to multipath transmissions

    ASIdE: Using Autocorrelation-Based Size Estimation for Scheduling Bursty Workloads.

    Get PDF
    Temporal dependence in workloads creates peak congestion that can make service unavailable and reduce system performance. To improve system performability under conditions of temporal dependence, a server should quickly process bursts of requests that may need large service demands. In this paper, we propose and evaluateASIdE, an Autocorrelation-based SIze Estimation, that selectively delays requests which contribute to the workload temporal dependence. ASIdE implicitly approximates the shortest job first (SJF) scheduling policy but without any prior knowledge of job service times. Extensive experiments show that (1) ASIdE achieves good service time estimates from the temporal dependence structure of the workload to implicitly approximate the behavior of SJF; and (2) ASIdE successfully counteracts peak congestion in the workload and improves system performability under a wide variety of settings. Specifically, we show that system capacity under ASIdE is largely increased compared to the first-come first-served (FCFS) scheduling policy and is highly-competitive with SJF. © 2012 IEEE
    corecore