8,327 research outputs found
Visions and Challenges in Managing and Preserving Data to Measure Quality of Life
Health-related data analysis plays an important role in self-knowledge,
disease prevention, diagnosis, and quality of life assessment. With the advent
of data-driven solutions, a myriad of apps and Internet of Things (IoT) devices
(wearables, home-medical sensors, etc) facilitates data collection and provide
cloud storage with a central administration. More recently, blockchain and
other distributed ledgers became available as alternative storage options based
on decentralised organisation systems. We bring attention to the human data
bleeding problem and argue that neither centralised nor decentralised system
organisations are a magic bullet for data-driven innovation if individual,
community and societal values are ignored. The motivation for this position
paper is to elaborate on strategies to protect privacy as well as to encourage
data sharing and support open data without requiring a complex access protocol
for researchers. Our main contribution is to outline the design of a
self-regulated Open Health Archive (OHA) system with focus on quality of life
(QoL) data.Comment: DSS 2018: Data-Driven Self-Regulating System
Dwarna : a blockchain solution for dynamic consent in biobanking
Dynamic consent aims to empower research partners and facilitate active participation in the research process. Used within
the context of biobanking, it gives individuals access to information and control to determine how and where their
biospecimens and data should be used. We present Dwarnaâa web portal for âdynamic consentâ that acts as a hub
connecting the different stakeholders of the Malta Biobank: biobank managers, researchers, research partners, and the
general public. The portal stores research partnersâ consent in a blockchain to create an immutable audit trail of research
partnersâ consent changes. Dwarnaâs structure also presents a solution to the European Unionâs General Data Protection
Regulationâs right to erasureâa right that is seemingly incompatible with the blockchain model. Dwarnaâs transparent
structure increases trustworthiness in the biobanking process by giving research partners more control over which research
studies they participate in, by facilitating the withdrawal of consent and by making it possible to request that the biospecimen
and associated data are destroyed.peer-reviewe
Secure and Trustable Electronic Medical Records Sharing using Blockchain
Electronic medical records (EMRs) are critical, highly sensitive private
information in healthcare, and need to be frequently shared among peers.
Blockchain provides a shared, immutable and transparent history of all the
transactions to build applications with trust, accountability and transparency.
This provides a unique opportunity to develop a secure and trustable EMR data
management and sharing system using blockchain. In this paper, we present our
perspectives on blockchain based healthcare data management, in particular, for
EMR data sharing between healthcare providers and for research studies. We
propose a framework on managing and sharing EMR data for cancer patient care.
In collaboration with Stony Brook University Hospital, we implemented our
framework in a prototype that ensures privacy, security, availability, and
fine-grained access control over EMR data. The proposed work can significantly
reduce the turnaround time for EMR sharing, improve decision making for medical
care, and reduce the overall costComment: AMIA 2017 Annual Symposium Proceeding
Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms
The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent âdevicesâ, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew âcognitive devicesâ are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
- âŠ