197,175 research outputs found
A brief introduction to the model microswimmer {\it Chlamydomonas reinhardtii}
The unicellular biflagellate green alga {\it Chlamydomonas reinhardtii} has
been an important model system in biology for decades, and in recent years it
has started to attract growing attention also within the biophysics community.
Here we provide a concise review of some of the aspects of {\it Chlamydomonas}
biology and biophysics most immediately relevant to physicists that might be
interested in starting to work with this versatile microorganism.Comment: 16 pages, 7 figures. To be published as part of EPJ S
Predicting Secondary Structures, Contact Numbers, and Residue-wise Contact Orders of Native Protein Structure from Amino Acid Sequence by Critical Random Networks
Prediction of one-dimensional protein structures such as secondary structures
and contact numbers is useful for the three-dimensional structure prediction
and important for the understanding of sequence-structure relationship. Here we
present a new machine-learning method, critical random networks (CRNs), for
predicting one-dimensional structures, and apply it, with position-specific
scoring matrices, to the prediction of secondary structures (SS), contact
numbers (CN), and residue-wise contact orders (RWCO). The present method
achieves, on average, accuracy of 77.8% for SS, correlation coefficients
of 0.726 and 0.601 for CN and RWCO, respectively. The accuracy of the SS
prediction is comparable to other state-of-the-art methods, and that of the CN
prediction is a significant improvement over previous methods. We give a
detailed formulation of critical random networks-based prediction scheme, and
examine the context-dependence of prediction accuracies. In order to study the
nonlinear and multi-body effects, we compare the CRNs-based method with a
purely linear method based on position-specific scoring matrices. Although not
superior to the CRNs-based method, the surprisingly good accuracy achieved by
the linear method highlights the difficulty in extracting structural features
of higher order from amino acid sequence beyond that provided by the
position-specific scoring matrices.Comment: 20 pages, 1 figure, 5 tables; minor revision; accepted for
publication in BIOPHYSIC
The dawn of mathematical biology
In this paper I describe the early development of the so-called mathematical
biophysics, as conceived by Nicolas Rashevsky back in the 1920's, as well as
his latter idealization of a "relational biology". I also underline that the
creation of the journal "The Bulletin of Mathematical Biophysics" was
instrumental in legitimating the efforts of Rashevsky and his students, and I
finally argue that his pioneering efforts, while still largely unacknowledged,
were vital for the development of important scientific contributions, most
notably the McCulloch-Pitts model of neural networks.Comment: 9 pages, without figure
<cellular biophysics- a study of the structure and function of living cells< progress report, period ending jul. 1, 1964
Cellular biophysics - ionizing radiation effect on genetics, cell mutation, and mutagenic nature of tritium deca
Partial differential equations in medical biophysics
A number of examples of collaborative research are outlined which show how mathematicians and medical biophysicists have contributed to a wider understanding of some problems in applied physiology
Report of travel grants to the international biophysics meeting, paris, june 22-27, 1964
Travel grants for international biophysics meeting, and membership list of international organization for pure and applied biophysic
- …