688 research outputs found

    Biomechanical analysis of gait with double backpack

    Get PDF
    When observing the gait associated with the transportation of backpacks by children and adults, there were differences in posture and gait when compared to gait without back overload. Over time, the problem seems to get worse. Access to information technology, contrary to expectations, has aggravated the problem because people carry in their daily lives more electronic equipment of a non-negligible weight. If we take as example of the military soldiers, they carry some of the material in a bag next to their chest. Using a backpack type double backpack, studies suggest its performance is better than traditional transport. This solution has not been systematically studied for the civilian population .The goal of this work is to study the problem of the transport of a non-negligible load, on the back, during a distance corresponding to a journey. Check for the advantages of using a double backpack. The method used is biomechanics. Will be analyzed the several parameters of gait in particular will be used electromyography, thermography and kinetics. For this study, we will take healthy young adults with ages between 18 to 30 and it is expected to confirm the advantages of using double backpack by the civilian population for the transport of high loads minimizing possible future injuries.info:eu-repo/semantics/publishedVersio

    Biomechanical differences associated with two different load carriage systems and their relationship to economy

    Get PDF
    Purpose. To explore relationships between load carriage economy and the kinematics and kinetics of load carriage using both a backpack (BP) and a double pack (DP). Basic procedures. Nine participants walked on a treadmill at gradients of between 27% downhill and 20% uphill, and over a force plate on level ground, at a speed of 3 km.h-1. Expired air was collected throughout the treadmill experiment and all experiments were filmed for subsequent biomechanical analysis. The relative economy of load carriage was expressed in terms of the Extra Load Index (ELI). Main findings. There was a tendency for the double pack system to be associated with better economy than the BP. The double pack system provoked significantly less forward lean than the backpack and the horizontal displacement of the CoM was also smaller for the double pack system and both of these factors were strongly related to economy. There was, however, a greater range of motion of the trunk in the DP condition and this was also associated with improved economy. Conclusions. The results suggest that the DP was associated with smaller perturbations in gait than the BP and that this represents an advantage in terms of economy. In particular freedom of movement of the trunk in the sagittal plane may be an important consideration in the efficiency of load carriage systems

    The effect of military load carriage on ground reaction forces

    Get PDF
    Load carriage is an inevitable part of military life both during training and operations. Loads carried are frequently as high as 60% bodyweight, and this increases injury risk. In the military, load is carried in a backpack (also referred to as a Bergen) and webbing, these combined form a load carriage system (LCS). A substantial body of literature exists recording the physiological effects of load carriage; less is available regarding the biomechanics. Previous biomechanical studies have generally been restricted to loads of 20% and 40% of bodyweight, usually carried in the backpack alone. The effect of rifle carriage on gait has also received little or no attention in the published literature. This is despite military personnel almost always carrying a rifle during load carriage. In this study, 15 male participants completed 8 conditions: military boot, rifle, webbing 8 and 16 kg, backpack 16 kg and LCS 24, 32 and 40 kg. Results showed that load added in 8 kg increments elicited a proportional increase in vertical and anteroposterior ground reaction force (GRF) parameters. Rifle carriage significantly increased the impact peak and mediolateral impulse compared to the boot condition. These effects may be the result of changes to the vertical and horizontal position of the body's centre of mass, caused by the restriction of natural arm swing patterns. Increased GRFs, particularly in the vertical axis, have been positively linked to overuse injuries. Therefore, the biomechanical analysis of load carriage is important in aiding our understanding of injuries associated with military load carriage

    A kinetic comparison of back-loading and head-loading in Xhosa women

    Get PDF
    The purpose of this study was to compare the kinetic responses associated with ground reaction force measurements to both head-loading and back-loading in a group of Xhosa women. Altogether, 16 women were divided into two groups based on their experience of head-loading. They walked over a force plate in three conditions: unloaded or carrying 20 kg in either a backpack or on their head. The most striking finding was that there was no difference in kinetic response to head-loading as a consequence of previous experience. Considering the differences between the load carriage methods, most changes were consistent with increasing load. Head-loading was, however, associated with a shorter contact time, smaller thrust maximum and greater vertical force minimum than back-loading. Both loading conditions differed from unloaded walking for a number of temporal variables associated with the ground contact phase, e.g. vertical impact peak was delayed whilst vertical thrust maximum occurred earlier. Statement of Relevance: Consideration of the kinetics of head and back load carriage in African women is important from a health and safety perspective, providing an understanding of the mechanical adaptations associated with both forms of load carriage for a group of people for whom such load carriage is a daily necessity

    The Extra Load Index as a method for comparing the relative economy of load carriage systems

    Get PDF
    The Extra Load Index (ELI) has been proposed as a suitable method of assessing the relative economy of load carriage systems. The purpose of this study was to determine, based on empirical evidence, that the ELI can accommodate variations in both body composition and added load. In total, 30 women walked carrying loads of up to 70% body mass at self-selected walking speeds whilst expired air was collected. In addition, each of the women had body composition assessed via dual energy X-ray absorptiometry. Results show that the ELI is independent of body composition variables, the magnitude of additional loads and the speed of progression. Consequently, it is suggested that it represents an appropriate method of comparing load carriage systems in both scientific and commercial arenas. Statement of Relevance:This paper demonstrates that ELI is independent of body composition, added load and speed and is therefore an appropriate method to generalise comparisons of load carriage systems. It has the advantage of being easily understood by manufacturers and consumers whilst retaining appropriate scientific precision

    The effect of load distribution within military load carriage systems on the kinetics of human gait

    Get PDF
    Military personnel carry their equipment in load carriage systems (LCS) which consists of webbing and a Bergen (aka backpack). In scientific terms it is most efficient to carry load as close to the body's centre of mass (CoM) as possible, this has been shown extensively with physiological studies. However, less is known regarding the kinetic effects of load distribution. Twelve experienced load carriers carried four different loads (8, 16, 24 and 32 kg) in three LCS (backpack, standard and AirMesh). The three LCS represented a gradual shift to a more even load distribution around the CoM. Results from the study suggest that shifting the CoM posteriorly by carrying load solely in a backpack significantly reduced the force produced at toe-off, whilst also decreasing stance time at the heavier loads. Conversely, distributing load evenly on the trunk significantly decreased the maximum braking force by 10%. No other interactions between LCS and kinetic parameters were observed. Despite this important findings were established, in particular the effect of heavy load carriage on maximum braking force. Although the total load carried is the major cause of changes to gait patterns, the scientific testing of, and development of, future LCS can modify these risks

    The influence of rifle carriage on the kinetics of human gait

    Get PDF
    The influence that rifle carriage has on human gait has received little attention in the published literature. Rifle carriage has two main effects, to add load to the anterior of the body and to restrict natural arm swing patterns. Kinetic data were collected from 15 male participants, with 10 trials in each of four experimental conditions. The conditions were: walking without a load (used as a control condition); carrying a lightweight rifle simulator, which restricted arm movements but applied no additional load; wearing a 4.4 kg diving belt, which allowed arms to move freely; carrying a weighted (4.4 kg) replica SA80 rifle. Walking speed was fixed at 1.5 m/s (+5%) and data were sampled at 400 Hz. Results showed that rifle carriage significantly alters the ground reaction forces produced during walking, the most important effects being an increase in the impact peak and mediolateral forces. This study suggests that these effects are due to the increased range of motion of the body’s centre of mass caused by the impeding of natural arm swing patterns. The subsequent effect on the potential development of injuries in rifle carriers is unknown

    Ground reaction forces and plantar pressure distribution during occasional loaded gait

    Get PDF
    This study compared the ground reaction forces (GRF) and plantar pressures between unloaded and occasional loaded gait. The GRF and plantar pressures of 60 participants were recorded during unloaded gait and occasional loaded gait (wearing a backpack that raised their body mass index to 30); this load criterion was adopted because is considered potentially harmful in permanent loaded gait (obese people). The results indicate an overall increase (absolute values) of GRF and plantar pressures during occasional loaded gait (p < 0.05); also, higher normalized (by total weight) values in the medial midfoot and toes, and lower values in the lateral rearfoot region were observed. During loaded gait the magnitude of the vertical GRF (impact and thrust maximum) decreased and the shear forces increased more than did the proportion of the load (normalized values). These data suggest a different pattern of GRF and plantar pressure distribution during occasional loaded compared to unloaded gait

    Force and pressure analysis during occasional loaded gait

    Get PDF
    O documento em anexo encontra-se na versão pre-print (versão inicial enviada para o editor).The aim of this study was to compare the ground reaction forces and plantar pressure parameters between unloaded and occasional loaded gait. The ground reaction forces and plantar pressure of 60 participants were recorded during unloaded and occasional loaded gait (wearing a backpack which raises the participant´s body mass index to 30). The results indicate an overall increase of forces and plantar pressure during occasional loaded gait where the absolute values were analyzed (p<0.05), while the normalized values suggested a non-linear relation between backpack mass and plantar pressure increases, where the medial midfoot and toes were more required while the lateral rearfoot was less during loaded gait (p<0.05). Also, during loaded gait the magnitude of impact and propulsive forces decreased and the shear forces increased more than proportion of the load. These data suggest a different pattern of plantar pressure distribution and forces during occasional loaded when compared to unloaded gai
    corecore