468,337 research outputs found

    Philip Siekevitz: Bridging biochemistry and cell biology

    Get PDF
    Philip Siekevitz, an Emeritus Professor at the Rockefeller University who madepioneering contributions to the development of modern cell biology, passed awayon December 5th, 2009. He was a creative and enthusiastic scientist, as well asa great experimentalist who throughout his lifetime transmitted the joy ofpracticing science and the happiness that comes with the acquisition of newknowledge. He was a man of great integrity, with a thoroughly engagingpersonality and a humility not often found in people of his talent

    Molecular biology: Self-sustaining chemistry

    Get PDF
    Molecular biology is an established interdisciplinary field within biology that deals fundamentally with the function of any nucleic acid in the cellular context. The molecular biology section in Chemistry Central Journal focusses on the genetically determined chemistry and biochemistry occuring in the cell

    N-arachidonylglycine is a caloric state-dependent circulating metabolite which regulates human CD4+T cell responsiveness

    Get PDF
    Acknowledgments We thank Drs. Zoe Hall and Sonia Liggi of the University of Cambridge Biochemistry Department for their contributions to metabolomics analysis and data processing. Shahin Hassanzadeh of the Laboratory of Mitochondrial Biology and Metabolism for developing the PBMC RNAseq library.Matthew Rodman of the Laboratory of Mitochondrial Biology and Metabolism for preparing lean/obese samples. Dr. Duck-Yeon Lee of the NHLBI Biochemistry Core for NAGly analysis in cell culture. Special thanks to the National Institutes of Health Oxford-Cambridge Scholars Program and the International Biomedical Research Alliance for their sponsorship and support. Funding: NHLBI Division of Intramural Research (MNS – ZIA-HL005199) and the UK MRC (JLG – MR/P011705/2; UKDRI-5002; MAPUK).Peer reviewedPublisher PD

    The untapped potential of plant thin cell layers

    Get PDF
    Thin cell layers (TCLs), which contain a small number of cells or tissues, are explants excised from different organs (stems, leaves, roots, inflorescences, flowers, cotyledons, hypocotyls/epicotyls, and embryos). After almost 45 years of research, this culture system has been used for several monocotyledonous and dicotyledonous plants of commercial importance, and for model plants. The limited amount of cells in a TCL is of paramount importance because marker molecules/genes of differentiation can be easily localized in situ in the target/responsive cells. Thus, the use of TCLs has allowed, and continues to allow, for the expansion of knowledge in plant research in a practical and applied manner into the fields of tissue culture and micropropagation, cell and organ genetics, molecular biology, biochemistry, and development. Starting from a brief historical background, the actual and potential uses of the TCL system are briefly reviewed

    EGFR is required for Wnt9a-Fzd9b signalling specificity in haematopoietic stem cells.

    Get PDF
    Wnt signalling drives many processes in development, homeostasis and disease; however, the role and mechanism of individual ligand-receptor (Wnt-Frizzled (Fzd)) interactions in specific biological processes remain poorly understood. Wnt9a is specifically required for the amplification of blood progenitor cells during development. Using genetic studies in zebrafish and human embryonic stem cells, paired with in vitro cell biology and biochemistry, we determined that Wnt9a signals specifically through Fzd9b to elicit β-catenin-dependent Wnt signalling that regulates haematopoietic stem and progenitor cell emergence. We demonstrate that the epidermal growth factor receptor (EGFR) is required as a cofactor for Wnt9a-Fzd9b signalling. EGFR-mediated phosphorylation of one tyrosine residue on the Fzd9b intracellular tail in response to Wnt9a promotes internalization of the Wnt9a-Fzd9b-LRP signalosome and subsequent signal transduction. These findings provide mechanistic insights for specific Wnt-Fzd signals, which will be crucial for specific therapeutic targeting and regenerative medicine

    Meta!Blast computer game: a pipeline from science to 3D art to education

    Get PDF
    Meta!Blast (http://www.metablast.org) is designed to address the challenges students often encounter in understanding cell and metabolic biology. Developed by faculty and students in biology, biochemistry, computer science, game design, pedagogy, art and story, Meta!Blast is being created using Maya (http://usa.autodesk.com/maya/) and the Unity 3D (http://unity3d.com/) game engine, for Macs and PCs in classrooms; it has also been exhibited in an immersive environment. Here, we describe the pipeline from protein structural data and holographic information to art to the threedimensional (3D) environment to the game engine, by which we provide a publicly-available interactive 3D cellular world that mimics a photosynthetic plant cell

    Applications Of Microspectroscopy, Hyperspectral Chemical Imaging And Fluorescence Microscopy In Chemistry, Biochemistry, Biotechnology, Molecular And Cell Biology

    Get PDF
    Chemical imaging is a technique for the simultaneous measurement of spectra (chemical information) and images or pictures (spatial information)^1,2^. The technique is most often applied to either solid or gel samples, and has applications in chemistry, biology^3-8^, medicine^9,10^, pharmacy^11^ (see also for example: Chemical Imaging Without Dyeing), food science, Food Physical Chemistry, Biotechnology^12,13^, Agriculture and industry. NIR, IR and Raman chemical imaging is also referred to as hyperspectral, spectroscopic, spectral or multi-spectral imaging (also see micro-spectroscopy). However, other ultra-sensitive and selective, chemical imaging techniques are also in use that involve either UV-visible or fluorescence microspectroscopy

    New Initiatives in Biological and Medical Science

    Get PDF
    In the early 1980s, The Rockefeller University launched a set of new initiatives in fields of biochemistry and molecular biology, which encompass genetics, cell biology, and neurobiology. Seven new research laboratories are being established in the brief period between 1981 and 1983. This publication features the most important surge of first-rank investigators onto the campus during the past 20 years: Robert Roeder, Emil T. Kaiser, Nam-Hai Chua, George Cross, Martin Carter, Torsten Wiesel,and Paul Greengard.https://digitalcommons.rockefeller.edu/initiatives-biological-medical-science/1000/thumbnail.jp
    corecore