1,268 research outputs found
CMOS Architectures and circuits for high-speed decision-making from image flows
We present architectures, CMOS circuits and CMOS chips to process image flows at very high speed. This is achieved by exploiting bio-inspiration and performing processing tasks in parallel manner and concurrently with image acquisition. A vision system is presented which makes decisions within sub-msec range. This is very well suited for defense and security applications requiring segmentation and tracking of rapidly moving objects
Interactive analogical retrieval: practice, theory and technology
Analogy is ubiquitous in human cognition. One of the important questions related to understanding the situated nature of analogy-making is how people retrieve source analogues via their interactions with external environments. This dissertation studies interactive analogical retrieval in the context of biologically inspired design (BID). BID involves creative use of analogies to biological systems to develop solutions for complex design problems (e.g., designing a device for acquiring water in desert environments based on the analogous fog-harvesting abilities of the Namibian Beetle). Finding the right biological analogues is one of the critical first steps in BID. Designers routinely search online in order to find their biological sources of inspiration. But this task of online bio-inspiration seeking represents an instance of interactive analogical retrieval that is extremely time consuming and challenging to accomplish. This dissertation focuses on understanding and supporting the task of online bio-inspiration seeking.
Through a series of field studies, this dissertation uncovered the salient characteristics and challenges of online bio-inspiration seeking. An information-processing model of interactive analogical retrieval was developed in order to explain those challenges and to identify the underlying causes. A set of measures were put forth to ameliorate those challenges by targeting the identified causes. These measures were then implemented in an online information-seeking technology designed to specifically support the task of online bio-inspiration seeking. Finally, the validity of the proposed measures was investigated through a series of experimental studies and a deployment study. The trends are encouraging and suggest that the proposed measures has the potential to change the dynamics of online bio-inspiration seeking in favor of ameliorating the identified challenges of online bio-inspiration seeking.PhDCommittee Chair: Goel, Ashok; Committee Member: Kolodner, Janet; Committee Member: Maher, Mary Lou; Committee Member: Nersessian, Nancy; Committee Member: Yen, Jeannett
Advances in Bio-Inspired Robots
This book covers three major topics, specifically Biomimetic Robot Design, Mechanical System Design from Bio-Inspiration, and Bio-Inspired Analysis on A Mechanical System. The Biomimetic Robot Design part introduces research on flexible jumping robots, snake robots, and small flying robots, while the Mechanical System Design from Bio-Inspiration part introduces Bioinspired Divide-and-Conquer Design Methodology, Modular Cable-Driven Human-Like Robotic Arm andWall-Climbing Robot. Finally, in the Bio-Inspired Analysis on A Mechanical System part, research contents on the control strategy of Surgical Assistant Robot, modeling of Underwater Thruster, and optimization of Humanoid Robot are introduced
Cross-Scale Cost Aggregation for Stereo Matching
Human beings process stereoscopic correspondence across multiple scales.
However, this bio-inspiration is ignored by state-of-the-art cost aggregation
methods for dense stereo correspondence. In this paper, a generic cross-scale
cost aggregation framework is proposed to allow multi-scale interaction in cost
aggregation. We firstly reformulate cost aggregation from a unified
optimization perspective and show that different cost aggregation methods
essentially differ in the choices of similarity kernels. Then, an inter-scale
regularizer is introduced into optimization and solving this new optimization
problem leads to the proposed framework. Since the regularization term is
independent of the similarity kernel, various cost aggregation methods can be
integrated into the proposed general framework. We show that the cross-scale
framework is important as it effectively and efficiently expands
state-of-the-art cost aggregation methods and leads to significant
improvements, when evaluated on Middlebury, KITTI and New Tsukuba datasets.Comment: To Appear in 2013 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2014 (poster, 29.88%
Learning from nature: Bio-Inspiration for damage-tolerant high-performance fibre-reinforced composites
Over millions of years Nature has attained highly optimized structural designs with remarkable toughness, strength, damage resistance and damage tolerance - properties that are so far difficult to combine in artificial high-performance fibre-reinforced polymers (HPFRPs). Recent studies, which have successfully replicated the structures and especially the toughening mechanisms found in flora and fauna, are reviewed in this work. At the core of the manufacturing of damage-tolerant bio-inspired composites, an understanding of the design principles and mechanisms is key. Universal and naturally-inherent design features, such as hierarchical- and organic-inorganic-structures as well as helical or fibrous arrangements of building blocks were found to promote numerous toughening mechanisms. Common to these features, the outstanding ability of diffusing damage at a sub-critical state has been identified as a powerful and effective mechanism to achieve high damage tolerance. Novel manufacturing processes suitable for HPFRP (such as tailored high-precision tape placement, micro-moulding, laser-engraving and additive manufacturing) have recently gained immense traction in the research community. This stems from the achievable and required geometrical complexity for HPFRPs and the replication of subtly balanced interaction between the material constituents. Even though trends in the literature clearly show that a bio-inspired material design philosophy is a successful strategy to design more efficient composite structures with enhanced damage tolerance and mechanical performance, Nature continues to offer new challenging opportunities yet to be explored, which could lead to a new era of HPFRP composites
Biomimétisme et bio-inspiration : nouvelles techniques, nouvelles éthiques ?
Dans un contexte de crises économique et écologique, la préoccupation croissante des sociétés occidentales pour une meilleure intégration des productions techniques dans les cycles du vivant donne naissance dans les années 1990 à une nouvelle approche visant à réconcilier développement industriel, promesse de croissance économique et compatibilité avec les écosystèmes naturels. Cette démarche composite, portée par un ensemble d’acteurs hétérogènes, notamment dans les champs de la permaculture..
Bio-inspired broad-class phonetic labelling
Recent studies have shown that the correct labeling of phonetic classes may help current Automatic Speech Recognition (ASR) when combined with classical parsing automata based on Hidden Markov Models (HMM).Through the present paper a method for Phonetic Class Labeling (PCL) based on bio-inspired speech processing is described. The methodology is based in the automatic detection of formants and formant trajectories after a careful separation of the vocal and glottal components of speech and in the operation of CF (Characteristic Frequency) neurons in the cochlear nucleus and cortical complex of the human auditory apparatus. Examples of phonetic class labeling are given and the applicability of the method to Speech Processing is discussed
Mobile Robots for Localizing Gas Emission Sources on Landfill Sites: Is Bio-Inspiration the Way to Go?
Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully “translated” into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms
- …