786 research outputs found
Enhanced antiproton production in Pb(160 AGeV)+Pb reactions: evidence for quark gluon matter?
The centrality dependence of the antiproton per participant ratio is studied
in Pb(160 AGeV)+Pb reactions. Antiproton production in collisions of heavy
nuclei at the CERN/SPS seems considerably enhanced as compared to conventional
hadronic physics, given by the antiproton production rates in and
antiproton annihilation in reactions. This enhancement is consistent
with the observation of strong in-medium effects in other hadronic observables
and may be an indication of partial restoration of chiral symmetry
Antibaryons bound in nuclei
We study the possibility of producing a new kind of nuclear systems which in addition to ordinary nucleons contain a few antibaryons (B = p, , etc.). The properties of such systems are described within the relativistic mean field model by employing G parity transformed interactions for antibaryons. Calculations are first done for infinite systems and then for finite nuclei from 4He to 208Pb. It is demonstrated that the presence of a real antibaryon leads to a strong rearrangement of a target nucleus resulting in a significant increase of its binding energy and local compression. Noticeable e ects remain even after the antibaryon coupling constants are reduced by factor 3 4 compared to G parity motivated values. We have performed detailed calculations of the antibaryon annihilation rates in the nuclear environment by applying a kinetic approach. It is shown that due to significant reduction of the reaction Q values, the in medium annihilation rates should be strongly suppressed leading to relatively long lived antibaryon nucleus systems. Multi nucleon annihilation channels are analyzed too. We have also estimated formation probabilities of bound B + A systems in pA reactions and have found that their observation will be feasible at the future GSI antiproton facility. Several observable signatures are proposed. The possibility of producing multi quark antiquark clusters is discussed. PACS numbers: 25.43.+t, 21.10.-k, 21.30.Fe, 21.80.+
Microscopic Models for Ultrarelativistic Heavy Ion Collisions
In this paper, the concepts of microscopic transport theory are introduced
and the features and shortcomings of the most commonly used ansatzes are
discussed. In particular, the Ultrarelativistic Quantum Molecular Dynamics
(UrQMD) transport model is described in great detail. Based on the same
principles as QMD and RQMD, it incorporates a vastly extended collision term
with full baryon-antibaryon symmetry, 55 baryon and 32 meson species. Isospin
is explicitly treated for all hadrons. The range of applicability stretches
from GeV/nucleon, allowing for
a consistent calculation of excitation functions from the intermediate energy
domain up to ultrarelativistic energies. The main physics topics under
discussion are stopping, particle production and collective flow.Comment: 129 pages, pagestyle changed using US letter (8.5x11 in) format. The
whole paper (13 Mb ps file) could also be obtained from
ftp://ftp.th.physik.uni-frankfurt.de/pub/urqmd/ppnp2.ps.g
Odderon in baryon-baryon scattering from the AdS/CFT correspondence
Based on the AdS/CFT correspondence, we present a holographic description of
various C-odd exchanges in high energy baryon-baryon and baryon-antibaryon
scattering, and calculate their respective contributions to the difference in
the total cross sections. We predict that, due to the warp factor of AdS_5, the
total cross section in pp collisions is larger than in p\bar{p} collisions at
asymptotically high energies.Comment: 23 pages, v2: minor changes, to be published in JHE
- …