258,840 research outputs found
Evaluation of a Bayesian inference network for ligand-based virtual screening
Background
Bayesian inference networks enable the computation of the probability that an event will occur. They have been used previously to rank textual documents in order of decreasing relevance to a user-defined query. Here, we modify the approach to enable a Bayesian inference network to be used for chemical similarity searching, where a database is ranked in order of decreasing probability of bioactivity.
Results
Bayesian inference networks were implemented using two different types of network and four different types of belief function. Experiments with the MDDR and WOMBAT databases show that a Bayesian inference network can be used to provide effective ligand-based screening, especially when the active molecules being sought have a high degree of structural homogeneity; in such cases, the network substantially out-performs a conventional, Tanimoto-based similarity searching system. However, the effectiveness of the network is much less when structurally heterogeneous sets of actives are being sought.
Conclusion
A Bayesian inference network provides an interesting alternative to existing tools for ligand-based virtual screening
PAC-Bayesian Theory Meets Bayesian Inference
We exhibit a strong link between frequentist PAC-Bayesian risk bounds and the
Bayesian marginal likelihood. That is, for the negative log-likelihood loss
function, we show that the minimization of PAC-Bayesian generalization risk
bounds maximizes the Bayesian marginal likelihood. This provides an alternative
explanation to the Bayesian Occam's razor criteria, under the assumption that
the data is generated by an i.i.d distribution. Moreover, as the negative
log-likelihood is an unbounded loss function, we motivate and propose a
PAC-Bayesian theorem tailored for the sub-gamma loss family, and we show that
our approach is sound on classical Bayesian linear regression tasks.Comment: Published at NIPS 2015
(http://papers.nips.cc/paper/6569-pac-bayesian-theory-meets-bayesian-inference
- …