2,230 research outputs found
Wavefunction extended Lagrangian Born-Oppenheimer molecular dynamics
Extended Lagrangian Born-Oppenheimer molecular dynamics [Niklasson, Phys.
Rev. Lett. 100 123004 (2008)] has been generalized to the propagation of the
electronic wavefunctions. The technique allows highly efficient first
principles molecular dynamics simulations using plane wave pseudopotential
electronic structure methods that are stable and energy conserving also under
incomplete and approximate self-consistency convergence. An implementation of
the method within the planewave basis set is presented and the accuracy and
efficiency is demonstrated both for semi-conductor and metallic materials.Comment: 6 pages, 3 figure
Stable and Efficient Linear Scaling First-Principles Molecular Dynamics for 10,000+ atoms
The recent progress of linear-scaling or O(N) methods in the density
functional theory (DFT) is remarkable. We expect that first-principles
molecular dynamics (FPMD) simulations based on DFT can now treat more realistic
and complex systems using the O(N) technique. However, very few examples of
O(N) FPMD simulations exist so far and the information for the accuracy or
reliability of the simulations is very limited. In this paper, we show that
efficient and robust O(N) FPMD simulations are now possible by the combination
of the extended Lagrangian Born-Oppenheimer molecular dynamics method, which
was recently proposed by Niklasson et al (Phys. Rev. Lett. 100, 123004 (2008)),
and the density matrix method as an O(N) technique. Using our linear-scaling
DFT code Conquest, we investigate the reliable calculation conditions for the
accurate O(N) FPMD and demonstrate that we are now able to do actual and
reliable self-consistent FPMD simulation of a very large system containing
32,768 atoms.Comment: 26 pages, 10 figures, accepted by J. Chem. Theory Compu
Equation of state of metallic hydrogen from Coupled Electron-Ion Monte Carlo simulations
We present a study of hydrogen at pressures higher than molecular
dissociation using the Coupled Electron-Ion Monte Carlo method. These
calculations use the accurate Reptation Quantum Monte Carlo method to estimate
the electronic energy and pressure while doing a Monte Carlo simulation of the
protons. In addition to presenting simulation results for the equation of state
over a large region of phase space, we report the free energy obtained by
thermodynamic integration. We find very good agreement with DFT calculations
for pressures beyond 600 GPa and densities above . Both
thermodynamic as well as structural properties are accurately reproduced by DFT
calculations. This agreement gives a strong support to the different
approximations employed in DFT, specifically the approximate
exchange-correlation potential and the use of pseudopotentials for the range of
densities considered. We find disagreement with chemical models, which suggests
a reinvestigation of planetary models, previously constructed using the
Saumon-Chabrier-Van Horn equations of state.Comment: 9 pages, 7 figure
An Efficient and Accurate Car-Parrinello-like Approach to Born-Oppenheimer Molecular Dynamics
We present a new method which combines Car-Parrinello and Born-Oppenheimer
molecular dynamics in order to accelerate density functional theory based
ab-initio simulations. Depending on the system a gain in efficiency of one to
two orders of magnitude has been observed, which allows ab-initio molecular
dynamics of much larger time and length scales than previously thought
feasible. It will be demonstrated that the dynamics is correctly reproduced and
that high accuracy can be maintained throughout for systems ranging from
insulators to semiconductors and even to metals in condensed phases. This
development considerably extends the scope of ab-initio simulations.Comment: 4 pages, 3 figures; Accepted by Phys. Rev. Lett. for publicatio
- …