19,128 research outputs found
Spatiotemporal Correlations between Blood-Brain Barrier Permeability and Apparent Diffusion Coefficient in a Rat Model of Ischemic Stroke
Variations in apparent diffusion coefficient of water (ADC) and blood-brain barrier (BBB) permeability after ischemia have been suggested, though the correlation between ADC alterations and BBB opening remains to be studied. We hypothesized that there are correlations between the alteration of ADC and BBB permeability. Rats were subjected to 2 h of transient middle cerebral artery occlusion and studied at 3 and 48 h of reperfusion, which are crucial times of BBB opening. BBB permeability and ADC values were measured by dynamic contrast-enhanced MRI and diffusion-weighted imaging, respectively. Temporal and spatial analyses of the evolution of BBB permeability and ADC alteration in cortical and subcortical regions were conducted along with the correlation between ADC and BBB permeability data. We found significant increases in BBB leakage and reduction in ADC values between 3 and 48 h of reperfusion. We identified three MR tissue signature models: high Ki and low ADC, high Ki and normal ADC, and normal Ki and low ADC. Over time, areas with normal Ki and low ADC transformed into areas with high Ki. We observed a pattern of lesion evolution where the extent of initial ischemic injury reflected by ADC abnormalities determines vascular integrity. Our results suggest that regions with vasogenic edema alone are not likely to develop low ADC by 48 h and may undergo recovery
Current State and Future Perspectives in QSAR Models to Predict Blood Brain Barrier penetration in Central Nervous System Drug R&D
The blood brain barrier (BBB) is a physical and biochemical barrier that restricts the entry of certain drugs to the Central Nervous System (CNS), while allowing the passage of others. The ability to predict the permeability of a given molecule through the BBB is a key aspect in CNS drug discovery and development, since neurotherapeutic agents with molecular targets in the CNS should be able to cross the BBB, whereas peripherally acting agents should not, to minimize the risk of CNS adverse effects. In this review we examine and discuss QSAR approaches and current availability of experimental data for the construction of BBB permeability predictive models, focusing on the modeling of the biorelevant parameter unbound partitioning coefficient (Kp,uu) . Emphasis is made on two possible strategies to overcome the current limitations of in silico models: considering the prediction of brain penetration as a multifactorial problem, and increasing experimental datasets through accurate and standardized experimental techniques.Facultad de Ciencias Exacta
Validation and Characterization of a Novel Blood–Brain Barrier Platform for Investigating Traumatic Brain Injury
The Blood-Brain Barrier (BBB) is a highly-selective physiologic barrier responsible for maintaining cerebral homeostasis. Innovative in vitro models of the BBB are needed to provide useful insights into BBB function with CNS disorders like traumatic brain injury (TBI). TBI is a multidimensional and highly complex pathophysiological condition that requires intrinsic models to elucidate its mechanisms. Current models either lack fluidic shear stress, or neglect hemodynamic parameters important in recapitulating the human in vivo BBB phenotype. To address these limitations in the field, we developed a fluid dynamic novel platform which closely mimics these parameters. To validate our platform, Matrigel-coated Transwells were seeded with brain microvascular endothelial cells, both with and without co-cultured primary human astrocytes and bone-marrow mesenchymal stem cells. In this article we characterized BBB functional properties such as TEER and paracellular permeability. Our platform demonstrated physiologic relevant decreases in TEER in response to an ischemic environment, while directly measuring barrier fluid fluctuation. These recordings were followed with recovery, implying stability of the model. We also demonstrate that our dynamic platform is responsive to inflammatory and metabolic cues with resultant permeability coefficients. These results indicate that this novel dynamic platform will be a valuable tool for evaluating the recapitulating BBB function in vitro, screening potential novel therapeutics, and establishing a relevant paradigm to evaluate the pathophysiology of TBI
Recommended from our members
Cortical plasticity is associated with blood-brain barrier modulation.
Brain microvessels possess the unique properties of a blood-brain barrier (BBB), tightly regulating the passage of molecules from the blood to the brain neuropil and vice versa. In models of brain injury, BBB dysfunction and the associated leakage of serum albumin to the neuropil have been shown to induce pathological plasticity, neuronal hyper-excitability, and seizures. The effect of neuronal activity on BBB function and whether it plays a role in plasticity in the healthy brain remain unclear. Here we show that neuronal activity induces modulation of microvascular permeability in the healthy brain and that it has a role in local network reorganization. Combining simultaneous electrophysiological recording and vascular imaging with transcriptomic analysis in rats, and functional and BBB-mapping MRI in human subjects, we show that prolonged stimulation of the limb induces a focal increase in BBB permeability in the corresponding somatosensory cortex that is associated with long-term synaptic plasticity. We further show that the increased microvascular permeability depends on neuronal activity and involves caveolae-mediated transcytosis and transforming growth factor β signaling. Our results reveal a role of BBB modulation in cortical plasticity in the healthy brain, highlighting the importance of neurovascular interactions for sensory experience and learning
Adenosine receptor signaling: a key to opening the blood–brain door
International audienceAbstractThe aim of this review is to outline evidence that adenosine receptor (AR) activation can modulate blood–brain barrier (BBB) permeability and the implications for disease states and drug delivery. Barriers of the central nervous system (CNS) constitute a protective and regulatory interface between the CNS and the rest of the organism. Such barriers allow for the maintenance of the homeostasis of the CNS milieu. Among them, the BBB is a highly efficient permeability barrier that separates the brain micro-environment from the circulating blood. It is made up of tight junction-connected endothelial cells with specialized transporters to selectively control the passage of nutrients required for neural homeostasis and function, while preventing the entry of neurotoxic factors. The identification of cellular and molecular mechanisms involved in the development and function of CNS barriers is required for a better understanding of CNS homeostasis in both physiological and pathological settings. It has long been recognized that the endogenous purine nucleoside adenosine is a potent modulator of a large number of neurological functions. More recently, experimental studies conducted with human/mouse brain primary endothelial cells as well as with mouse models, indicate that adenosine markedly regulates BBB permeability. Extracellular adenosine, which is efficiently generated through the catabolism of ATP via the CD39/CD73 ecto-nucleotidase axis, promotes BBB permeability by signaling through A1 and A2A ARs expressed on BBB cells. In line with this hypothesis, induction of AR signaling by selective agonists efficiently augments BBB permeability in a transient manner and promotes the entry of macromolecules into the CNS. Conversely, antagonism of AR signaling blocks the entry of inflammatory cells and soluble factors into the brain. Thus, AR modulation of the BBB appears as a system susceptible to tighten as well as to permeabilize the BBB. Collectively, these findings point to AR manipulation as a pertinent avenue of research for novel strategies aiming at efficiently delivering therapeutic drugs/cells into the CNS, or at restricting the entry of inflammatory immune cells into the brain in some diseases such as multiple sclerosis
Anesthesia triggers drug delivery to experimental glioma in mice by hijacking caveolar transport
Background
Pharmaceutical intervention in the CNS is hampered by the shielding function of the blood–brain barrier (BBB). To induce clinical anesthesia, general anesthetics such as isoflurane readily penetrate the BBB. Here, we investigated whether isoflurane can be utilized for therapeutic drug delivery.
Methods
Barrier function in primary endothelial cells was evaluated by transepithelial/transendothelial electrical resistance, and nanoscale STED and SRRF microscopy. In mice, BBB permeability was quantified by extravasation of several fluorescent tracers. Mouse models including the GL261 glioma model were evaluated by MRI, immunohistochemistry, electron microscopy, western blot, and expression analysis.
Results
Isoflurane enhances BBB permeability in a time- and concentration-dependent manner. We demonstrate that, mechanistically, isoflurane disturbs the organization of membrane lipid nanodomains and triggers caveolar transport in brain endothelial cells. BBB tightness re-establishes directly after termination of anesthesia, providing a defined window for drug delivery. In a therapeutic glioblastoma trial in mice, simultaneous exposure to isoflurane and cytotoxic agent improves efficacy of chemotherapy.
Conclusions
Combination therapy, involving isoflurane-mediated BBB permeation with drug administration has far-reaching the
LC–MS/MS-based in vitro and in vivo Investigation of Blood–brain Barrier Integrity by Simultaneous Quantitation of Mannitol and Sucrose
Background
Understanding the pathophysiology of the blood brain–barrier (BBB) plays a critical role in diagnosis and treatment of disease conditions. Applying a sensitive and specific LC–MS/MS technique for the measurement of BBB integrity with high precision, we have recently introduced non-radioactive [13C12]sucrose as a superior marker substance. Comparison of permeability markers with different molecular weight, but otherwise similar physicochemical properties, can provide insights into the uptake mechanism at the BBB. Mannitol is a small hydrophilic, uncharged molecule that is half the size of sucrose. Previously only radioactive [3H]mannitol or [14C]mannitol has been used to measure BBB integrity. Methods
We developed a UPLC–MS/MS method for simultaneous analysis of stable isotope-labeled sucrose and mannitol. The in vivo BBB permeability of [13C6]mannitol and [13C12]sucrose was measured in mice, using [13C6]sucrose as a vascular marker to correct for brain intravascular content. Moreover, a Transwell model with induced pluripotent stem cell-derived brain endothelial cells was used to measure the permeability coefficient of sucrose and mannitol in vitro both under control and compromised (in the presence of IL-1β) conditions. Results
We found low permeability values for both mannitol and sucrose in vitro (permeability coefficients of 4.99 ± 0.152 × 10−7 and 3.12 ± 0.176 × 10−7 cm/s, respectively) and in vivo (PS products of 0.267 ± 0.021 and 0.126 ± 0.025 µl g−1 min−1, respectively). Further, the in vitro permeability of both markers substantially increased in the presence of IL-1β. Corrected brain concentrations (Cbr), obtained by washout vs. vascular marker correction, were not significantly different for either mannitol (0.071 ± 0.007 and 0.065 ± 0.009 percent injected dose per g) or sucrose (0.035 ± 0.003 and 0.037 ± 0.005 percent injected dose per g). These data also indicate that Cbr and PS product values of mannitol were about twice the corresponding values of sucrose. Conclusions
We established a highly sensitive, specific and reproducible approach to simultaneously measure the BBB permeability of two classical low molecular weight, hydrophilic markers in a stable isotope labeled format. This method is now available as a tool to quantify BBB permeability in vitro and in vivo in different disease models, as well as for monitoring treatment outcomes
Establishment of a Human Blood-Brain Barrier Co-culture Model Mimicking the Neurovascular Unit Using Induced Pluri- and Multipotent Stem Cells
Summary In vitro models of the human blood-brain barrier (BBB) are highly
desirable for drug development. This study aims to analyze a set of ten
different BBB culture models based on primary cells, human induced pluripotent
stem cells (hiPSCs), and multipotent fetal neural stem cells (fNSCs). We
systematically investigated the impact of astrocytes, pericytes, and NSCs on
hiPSC-derived BBB endothelial cell function and gene expression. The quadruple
culture models, based on these four cell types, achieved BBB characteristics
including transendothelial electrical resistance (TEER) up to 2,500 Ω cm2 and
distinct upregulation of typical BBB genes. A complex in vivo-like tight
junction (TJ) network was detected by freeze-fracture and transmission
electron microscopy. Treatment with claudin-specific TJ modulators caused TEER
decrease, confirming the relevant role of claudin subtypes for paracellular
tightness. Drug permeability tests with reference substances were performed
and confirmed the suitability of the models for drug transport studies
Anesthesia triggers drug delivery to experimental glioma in mice by hijacking caveolar transport
Abstract Background: Pharmaceutical intervention in the CNS is hampered by the shielding function of the blood-brain barrier (BBB). To induce clinical anesthesia, general anesthetics such as isoflurane readily penetrate the BBB. Here, we investigated whether isoflurane can be utilized for therapeutic drug delivery. Methods: Barrier function in primary endothelial cells was evaluated by transepithelial/transendothelial electrical resistance, and nanoscale STED and SRRF microscopy. In mice, BBB permeability was quantified by extravasation of several fluorescent tracers. Mouse models including the GL261 glioma model were evaluated by MRI, immunohistochemistry, electron microscopy, western blot, and expression analysis. Results: Isoflurane enhances BBB permeability in a time- and concentration-dependent manner. We demonstrate that, mechanistically, isoflurane disturbs the organization of membrane lipid nanodomains and triggers caveolar transport in brain endothelial cells. BBB tightness re-establishes directly after termination of anesthesia, providing a defined window for drug delivery. In a therapeutic glioblastoma trial in mice, simultaneous exposure to isoflurane and cytotoxic agent improves efficacy of chemotherapy. Conclusions: Combination therapy, involving isoflurane-mediated BBB permeation with drug administration has far-reaching therapeutic implications for CNS malignancies
Host matrix metalloproteinases in cerebral malaria: new kids on the block against bloodbrain barrier integrity?
Cerebral malaria (CM) is a life-threatening complication of falciparum malaria, associated with high mortality rates, as well as neurological impairment in surviving patients. Despite disease severity, the etiology of CM remains elusive. Interestingly, although the Plasmodium parasite is sequestered in cerebral microvessels, it does not enter the brain parenchyma: so how does Plasmodium induce neuronal dysfunction? Several independent research groups have suggested a mechanism in which increased blood–brain barrier (BBB) permeability might allow toxic molecules from the parasite or the host to enter the brain. However, the reported severity of BBB damage in CM is variable depending on the model system, ranging from mild impairment to full BBB breakdown. Moreover, the factors responsible for increased BBB permeability are still unknown. Here we review the prevailing theories on CM pathophysiology and discuss new evidence from animal and human CM models implicating BBB damage. Finally, we will review the newly-described role of matrix metalloproteinases (MMPs) and BBB integrity. MMPs comprise a family of proteolytic enzymes involved in modulating inflammatory response, disrupting tight junctions, and degrading sub-endothelial basal lamina. As such, MMPs represent potential innovative drug targets for CM
- …