5,421 research outputs found
Automated Segmentation of Large 3D Images of Nervous Systems Using a Higher-order Graphical Model
This thesis presents a new mathematical model for segmenting volume images. The model is an energy function defined on the state space of all possibilities to remove or preserve splitting faces from an initial over-segmentation of the 3D image into supervoxels. It decomposes into potential functions that are learned automatically from a small amount of empirical training data. The learning is based on features of the distribution of gray values in the volume image and on features of the geometry and topology of the supervoxel segmentation. To be able to extract these features from large 3D images that consist of several billion voxels, a new algorithm is presented that constructs a suitable representation of the geometry and topology of volume segmentations in a block-wise fashion, in log-linear runtime (in the number of voxels) and in parallel, using only a prescribed amount of memory. At the core of this thesis is the optimization problem of finding, for a learned energy function, a segmentation with minimal energy. This optimization problem is difficult because the energy function consists of 3rd and 4th order potential functions that are not submodular. For sufficiently small problems with 10,000 degrees of freedom, it can be solved to global optimality using Mixed Integer Linear Programming. For larger models with 10,000,000 degrees of freedom, an approximate optimizer is proposed and compared to state-of-the-art alternatives. Using these new techniques and a unified data structure for multi-variate data and functions, a complete processing chain for segmenting large volume images, from the restoration of the raw volume image to the visualization of the final segmentation, has been implemented in C++. Results are shown for an application in neuroscience, namely the segmentation of a part of the inner plexiform layer of rabbit retina in a volume image of 2048 x 1792 x 2048 voxels that was acquired by means of Serial Block Face Scanning Electron Microscopy (Denk and Horstmann, 2004) with a resolution of 22nm x 22nm x 30nm. The quality of the automated segmentation as well as the improvement over a simpler model that does not take geometric context into account, are confirmed by a quantitative comparison with the gold standard
The case for emulating insect brains using anatomical "wiring diagrams" equipped with biophysical models of neuronal activity
Developing whole-brain emulation (WBE) technology would provide immense
benefits across neuroscience, biomedicine, artificial intelligence, and
robotics. At this time, constructing a simulated human brain lacks feasibility
due to limited experimental data and limited computational resources. However,
I suggest that progress towards this goal might be accelerated by working
towards an intermediate objective, namely insect brain emulation (IBE). More
specifically, this would entail creating biologically realistic simulations of
entire insect nervous systems along with more approximate simulations of
non-neuronal insect physiology to make "virtual insects." I argue that this
could be realistically achievable within the next 20 years. I propose that
developing emulations of insect brains will galvanize the global community of
scientists, businesspeople, and policymakers towards pursuing the loftier goal
of emulating the human brain. By demonstrating that WBE is possible via IBE,
simulating mammalian brains and eventually the human brain may no longer be
viewed as too radically ambitious to deserve substantial funding and resources.
Furthermore, IBE will facilitate dramatic advances in cognitive neuroscience,
artificial intelligence, and robotics through studies performed using virtual
insects.Comment: 25 pages, 2 figures. Biological Cybernetic
Model and Appearance Based Analysis of Neuronal Morphology from Different Microscopy Imaging Modalities
The neuronal morphology analysis is key for understanding how a brain works. This process requires the neuron imaging system with single-cell resolution; however, there is no feasible system for the human brain. Fortunately, the knowledge can be inferred from the model organism, Drosophila melanogaster, to the human system. This dissertation explores the morphology analysis of Drosophila larvae at single-cell resolution in static images and image sequences, as well as multiple microscopy imaging modalities. Our contributions are on both computational methods for morphology quantification and analysis of the influence of the anatomical aspect. We develop novel model-and-appearance-based methods for morphology quantification and illustrate their significance in three neuroscience studies.
Modeling of the structure and dynamics of neuronal circuits creates understanding about how connectivity patterns are formed within a motor circuit and determining whether the connectivity map of neurons can be deduced by estimations of neuronal morphology. To address this problem, we study both boundary-based and centerline-based approaches for neuron reconstruction in static volumes.
Neuronal mechanisms are related to the morphology dynamics; so the patterns of neuronal morphology changes are analyzed along with other aspects. In this case, the relationship between neuronal activity and morphology dynamics is explored to analyze locomotion procedures. Our tracking method models the morphology dynamics in the calcium image sequence designed for detecting neuronal activity. It follows the local-to-global design to handle calcium imaging issues and neuronal movement characteristics.
Lastly, modeling the link between structural and functional development depicts the correlation between neuron growth and protein interactions. This requires the morphology analysis of different imaging modalities. It can be solved using the part-wise volume segmentation with artificial templates, the standardized representation of neurons. Our method follows the global-to-local approach to solve both part-wise segmentation and registration across modalities.
Our methods address common issues in automated morphology analysis from extracting morphological features to tracking neurons, as well as mapping neurons across imaging modalities. The quantitative analysis delivered by our techniques enables a number of new applications and visualizations for advancing the investigation of phenomena in the nervous system
Gebiss: an ImageJ plugin for the specification of ground truth and the performance evaluation of 3D segmentation algorithms.
Background: Image segmentation is a crucial step in quantitative microscopy that helps to define regions of tissues, cells or subcellular compartments. Depending on the degree of user interactions, segmentation methods can be divided into manual, automated or semi-automated approaches. 3D image stacks usually require automated methods due to their large number of optical sections. However, certain applications benefit from manual or semi-automated approaches. Scenarios include the quantification of 3D images with poor signal-to-noise ratios or the generation of so-called ground truth segmentations that are used to evaluate the accuracy of automated segmentation methods.
Results: We have developed Gebiss; an ImageJ plugin for the interactive segmentation, visualisation and quantification of 3D microscopic image stacks. We integrated a variety of existing plugins for threshold-based segmentation and volume visualisation.
Conclusions: We demonstrate the application of Gebiss to the segmentation of nuclei in live Drosophila embryos and the quantification of neurodegeneration in Drosophila larval brains. Gebiss was developed as a cross-platform ImageJ plugin and is freely available on the web at http://imaging.bii.a-star.edu.sg/projects/gebiss
Gotta trace ‘em all: A mini-review on tools and procedures for segmenting single neurons toward deciphering the structural connectome
Decoding the morphology and physical connections of all the neurons populating a brain is necessary for predicting and studying the relationships between its form and function, as well as for documenting structural abnormalities in neuropathies. Digitizing a complete and high-fidelity map of the mammalian brain at the micro-scale will allow neuroscientists to understand disease, consciousness, and ultimately what it is that makes us humans. The critical obstacle for reaching this goal is the lack of robust and accurate tools able to deal with 3D datasets representing dense-packed cells in their native arrangement within the brain. This obliges neuroscientist to manually identify the neurons populating an acquired digital image stack, a notably time-consuming procedure prone to human bias. Here we review the automatic and semi-automatic algorithms and software for neuron segmentation available in the literature, as well as the metrics purposely designed for their validation, highlighting their strengths and limitations. In this direction, we also briefly introduce the recent advances in tissue clarification that enable significant improvements in both optical access of neural tissue and image stack quality, and which could enable more efficient segmentation approaches. Finally, we discuss new methods and tools for processing tissues and acquiring images at sub-cellular scales, which will require new robust algorithms for identifying neurons and their sub-structures (e.g., spines, thin neurites). This will lead to a more detailed structural map of the brain, taking twenty-first century cellular neuroscience to the next level, i.e., the Structural Connectome
- …