2,212,128 research outputs found
Results of the attitude reconstruction for the UniSat-6 microsatellite using in-orbit data
UniSat-6 is a civilian microsatellite that was launched in orbit on the 19th of June, 2014. Its main mission consisted in the in-orbit release of a number of on-board carried Cubesats and in the transmission to the UniSat-6 ground station of telemetry data and images from an on-board mounted camera. The spacecraft is equipped with a passive magnetic attitude control system. Gyros and magnetometers provide the information about the attitude of the spacecraft. The importance of reconstructing the attitude motion of UniSat-6 lies in the dual possibility, for future missions, of:controlling the direction of ejection of the on-board carried satelliteshaving an accurate pointing for remote sensing operation.The reconstruction of the attitude motion of UniSat-6 is based on the data of the on-board Commercial Off The Shelf (COTS) gyros and magnetometers, downloaded at the passages over the ground station in Roma, Italy. At ground, these data have been processed with the UnScented QUaternion Estimator (USQUE) algorithm. This estimator is an adaptation of the Unscented Filter to the problem of spacecraft attitude estimation. The USQUE is based on a dual attitude representation, which involves both quaternions and Generalized Rodrigues Parameters. In this work, the propagation phase of the algorithm contains only a kinematic model of the motion of the spacecraft. This paper presents the results of the reconstruction of the UniSat-6 attitude using on-board measurements. The results show that the spacecraft effectively stabilized its attitude motion thanks to the on-board magnetic devices
Attitude sensor
A device for controlling the attitude of a spacecraft is described. The device consists of two light sensors on a spacecraft that are mounted beneath a baffle which divides the light from a light source such as the sun or a star. The divided light reflects off of two reflective surfaces onto the two light sensors. When the spacecraft assumes its normal attitude, the baffle divides the light source into two equal parts, causing the two light sensors to produce equal outputs. When the light is equally detected, the stabilizing system is disconnected. Deviations from the normal attitude cause unequal distribution of the light source and energize the stabilizing system
Students' Attitude Toward the Implementation of Teaching Listening Using Dictoglos Technique
Listening is the basis for the development of all other skills and the main channel through which the learner makes initial contact with the target language and its culture. Dictogloss technique is a classroom dictation activity in which learners listen to a passage, note down key words and then work together to create a reconstructed version of the text. This activity combines individual and group activities. The students' attitude toward its implementation in listening teaching learning process in investigated in this study. It is a case study in the second year students of English Department Faculty of Teacher Training Nusantara PGRI Kediri University. The subject of the study was 2C class that consists of 38 students. The structured interview and closed ended questionnaire were used to know the students' attitude towards dictogloss. It was founded that the students have positive attitudes towards this technique especially in the affective aspect.It is suggested that the English teacher should use dictogloss technique in teaching listening comprehension since it the students found it interesting and challenging for them to be more active in teaching and learning process
Attitude control system
An attitude control system is described in which angular rate signals are generated by rate gyros mounted closely adjacent to gimbaled engines at the rear of a vehicle. Error signals representative of a commanded change in vehicle angle or attitude are obtained from a precision inertial platform located in the nose region of the vehicle. The rate gyro derived signals dominate at high frequencies where dynamic effects become significant, and platform signals dominate at low frequencies where precision signals are required for a steady vehicle attitude. The blended signals are applied in a conventional manner to control the gimbaling of vehicle engines about control axes
Spacecraft attitude sensor
A system for sensing the attitude of a spacecraft includes a pair of optical scanners having a relatively narrow field of view rotating about the spacecraft x-y plane. The spacecraft rotates about its z axis at a relatively high angular velocity while one scanner rotates at low velocity, whereby a panoramic sweep of the entire celestial sphere is derived from the scanner. In the alternative, the scanner rotates at a relatively high angular velocity about the x-y plane while the spacecraft rotates at an extremely low rate or at zero angular velocity relative to its z axis to provide a rotating horizon scan. The positions of the scanners about the x-y plane are read out to assist in a determination of attitude. While the satellite is spinning at a relatively high angular velocity, the angular positions of the bodies detected by the scanners are determined relative to the sun by providing a sun detector having a field of view different from the scanners
- …