18,383 research outputs found

    Atari games and Intel processors

    Full text link
    The asynchronous nature of the state-of-the-art reinforcement learning algorithms such as the Asynchronous Advantage Actor-Critic algorithm, makes them exceptionally suitable for CPU computations. However, given the fact that deep reinforcement learning often deals with interpreting visual information, a large part of the train and inference time is spent performing convolutions. In this work we present our results on learning strategies in Atari games using a Convolutional Neural Network, the Math Kernel Library and TensorFlow 0.11rc0 machine learning framework. We also analyze effects of asynchronous computations on the convergence of reinforcement learning algorithms

    Action-Conditional Video Prediction using Deep Networks in Atari Games

    Full text link
    Motivated by vision-based reinforcement learning (RL) problems, in particular Atari games from the recent benchmark Aracade Learning Environment (ALE), we consider spatio-temporal prediction problems where future (image-)frames are dependent on control variables or actions as well as previous frames. While not composed of natural scenes, frames in Atari games are high-dimensional in size, can involve tens of objects with one or more objects being controlled by the actions directly and many other objects being influenced indirectly, can involve entry and departure of objects, and can involve deep partial observability. We propose and evaluate two deep neural network architectures that consist of encoding, action-conditional transformation, and decoding layers based on convolutional neural networks and recurrent neural networks. Experimental results show that the proposed architectures are able to generate visually-realistic frames that are also useful for control over approximately 100-step action-conditional futures in some games. To the best of our knowledge, this paper is the first to make and evaluate long-term predictions on high-dimensional video conditioned by control inputs.Comment: Published at NIPS 2015 (Advances in Neural Information Processing Systems 28

    Combining Experience Replay with Exploration by Random Network Distillation

    Get PDF
    Our work is a simple extension of the paper "Exploration by Random Network Distillation". More in detail, we show how to efficiently combine Intrinsic Rewards with Experience Replay in order to achieve more efficient and robust exploration (with respect to PPO/RND) and consequently better results in terms of agent performances and sample efficiency. We are able to do it by using a new technique named Prioritized Oversampled Experience Replay (POER), that has been built upon the definition of what is the important experience useful to replay. Finally, we evaluate our technique on the famous Atari game Montezuma's Revenge and some other hard exploration Atari games.Comment: 8 pages, 6 figures, accepted as full-paper at IEEE Conference on Games (CoG) 201

    Learning Actions and Control of Focus of Attention with a Log-Polar-like Sensor

    Full text link
    With the long-term goal of reducing the image processing time on an autonomous mobile robot in mind we explore in this paper the use of log-polar like image data with gaze control. The gaze control is not done on the Cartesian image but on the log-polar like image data. For this we start out from the classic deep reinforcement learning approach for Atari games. We extend an A3C deep RL approach with an LSTM network, and we learn the policy for playing three Atari games and a policy for gaze control. While the Atari games already use low-resolution images of 80 by 80 pixels, we are able to further reduce the amount of image pixels by a factor of 5 without losing any gaming performance

    Model-Based Reinforcement Learning for Atari

    Full text link
    Model-free reinforcement learning (RL) can be used to learn effective policies for complex tasks, such as Atari games, even from image observations. However, this typically requires very large amounts of interaction -- substantially more, in fact, than a human would need to learn the same games. How can people learn so quickly? Part of the answer may be that people can learn how the game works and predict which actions will lead to desirable outcomes. In this paper, we explore how video prediction models can similarly enable agents to solve Atari games with fewer interactions than model-free methods. We describe Simulated Policy Learning (SimPLe), a complete model-based deep RL algorithm based on video prediction models and present a comparison of several model architectures, including a novel architecture that yields the best results in our setting. Our experiments evaluate SimPLe on a range of Atari games in low data regime of 100k interactions between the agent and the environment, which corresponds to two hours of real-time play. In most games SimPLe outperforms state-of-the-art model-free algorithms, in some games by over an order of magnitude
    corecore