4 research outputs found
Development and implementation of methodological framework towards flood risk management in ungauged basins
Flood Early Warning and Risk Modelling
Extreme hydrological phenomena are one of the most common causes of human life loss and material damage as a result of the manifestation of natural hazards around human communities. Climatic changes have directly impacted the temporal distribution of previously known flood events, inducing significantly increased frequency rates as well as manifestation intensities. Understanding the occurrence and manifestation behavior of flood risk as well as identifying the most common time intervals during which there is a greater probability of flood occurrence should be a subject of social priority, given the potential casualties and damage involved. However, considering the numerous flood analysis models that have been currently developed, this phenomenon has not yet been fully comprehended due to the numerous technical challenges that have arisen. These challenges can range from lack of measured field data to difficulties in integrating spatial layers of different scales as well as other potential digital restrictions.The aim of the current book is to promote publications that address flood analysis and apply some of the most novel inundation prediction models, as well as various hydrological risk simulations related to floods, that will enhance the current state of knowledge in the field as well as lead toward a better understanding of flood risk modeling. Furthermore, in the current book, the temporal aspect of flood propagation, including alert times, warning systems, flood time distribution cartographic material, and the numerous parameters involved in flood risk modeling, are discussed
Application of NEXRAD Radar-Based Quantitative Precipitation Estimations for Hydrologic Simulation Using ArcPy and HEC Software
Recent availability of various spatial data, especially for gridded rainfall amounts, provide a great opportunity in hydrological modeling of spatially distributed rainfall–runoff analysis. In order to support this advantage using gridded precipitation in hydrological application, (1) two main Python script programs for the following three steps of radar-based rainfall data processing were developed for Next Generation Weather Radar (NEXRAD) Stage III products: conversion of the XMRG format (binary to ASCII) files, geo-referencing (re-projection) with ASCII file in ArcGIS, and DSS file generation using HEC-GridUtil (existing program); (2) eight Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) models of ModClark and SCS Unit Hydrograph transform methods for rainfall–runoff flow simulations using both spatially distributed radar-based and basin-averaged lumped gauged rainfall were respectively developed; and (3) three storm event simulations including a model performance test, calibration, and validation were conducted. For the results, both models have relatively high statistical evaluation values (Nash–Sutcliffe efficiency—ENS 0.55–0.98 for ModClark and 0.65–0.93 for SCS UH), but it was found that the spatially distributed rainfall data-based model (ModClark) gives a better fit regarding observed streamflow for the two study basins (Cedar Creek and South Fork) in the USA, showing less requirements to calibrate the model with initial parameter values. Thus, the programs and methods developed in this research possibly reduce the difficulties of radar-based rainfall data processing (not only NEXRAD but also other gridded precipitation datasets—i.e., satellite-based data, etc.) and provide efficiency for HEC-HMS hydrologic process application in spatially distributed rainfall–runoff simulations
Application of NEXRAD Radar-Based Quantitative Precipitation Estimations for Hydrologic Simulation Using ArcPy and HEC Software
Recent availability of various spatial data, especially for gridded rainfall amounts, provide a great opportunity in hydrological modeling of spatially distributed rainfall–runoff analysis. In order to support this advantage using gridded precipitation in hydrological application, (1) two main Python script programs for the following three steps of radar-based rainfall data processing were developed for Next Generation Weather Radar (NEXRAD) Stage III products: conversion of the XMRG format (binary to ASCII) files, geo-referencing (re-projection) with ASCII file in ArcGIS, and DSS file generation using HEC-GridUtil (existing program); (2) eight Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) models of ModClark and SCS Unit Hydrograph transform methods for rainfall–runoff flow simulations using both spatially distributed radar-based and basin-averaged lumped gauged rainfall were respectively developed; and (3) three storm event simulations including a model performance test, calibration, and validation were conducted. For the results, both models have relatively high statistical evaluation values (Nash–Sutcliffe efficiency—ENS 0.55–0.98 for ModClark and 0.65–0.93 for SCS UH), but it was found that the spatially distributed rainfall data-based model (ModClark) gives a better fit regarding observed streamflow for the two study basins (Cedar Creek and South Fork) in the USA, showing less requirements to calibrate the model with initial parameter values. Thus, the programs and methods developed in this research possibly reduce the difficulties of radar-based rainfall data processing (not only NEXRAD but also other gridded precipitation datasets—i.e., satellite-based data, etc.) and provide efficiency for HEC-HMS hydrologic process application in spatially distributed rainfall–runoff simulations.</jats:p