1,713 research outputs found

    The diffuse Nitsche method: Dirichlet constraints on phase-field boundaries

    Get PDF
    We explore diffuse formulations of Nitsche's method for consistently imposing Dirichlet boundary conditions on phase-field approximations of sharp domains. Leveraging the properties of the phase-field gradient, we derive the variational formulation of the diffuse Nitsche method by transferring all integrals associated with the Dirichlet boundary from a geometrically sharp surface format in the standard Nitsche method to a geometrically diffuse volumetric format. We also derive conditions for the stability of the discrete system and formulate a diffuse local eigenvalue problem, from which the stabilization parameter can be estimated automatically in each element. We advertise metastable phase-field solutions of the Allen-Cahn problem for transferring complex imaging data into diffuse geometric models. In particular, we discuss the use of mixed meshes, that is, an adaptively refined mesh for the phase-field in the diffuse boundary region and a uniform mesh for the representation of the physics-based solution fields. We illustrate accuracy and convergence properties of the diffuse Nitsche method and demonstrate its advantages over diffuse penalty-type methods. In the context of imaging based analysis, we show that the diffuse Nitsche method achieves the same accuracy as the standard Nitsche method with sharp surfaces, if the inherent length scales, i.e., the interface width of the phase-field, the voxel spacing and the mesh size, are properly related. We demonstrate the flexibility of the new method by analyzing stresses in a human vertebral body

    Numerical Continuation and SPDE Stability for the 2D Cubic-Quintic Allen-Cahn Equation

    Full text link
    We study the Allen-Cahn equation with a cubic-quintic nonlinear term and a stochastic QQ-trace-class stochastic forcing in two spatial dimensions. This stochastic partial differential equation (SPDE) is used as a test case to understand, how numerical continuation methods can be carried over to the SPDE setting. First, we compute the deterministic bifurcation diagram for the PDE, i.e. without stochastic forcing. In this case, two locally asymptotically stable steady state solution branches exist upon variation of the linear damping term. Then we consider the Lyapunov operator equation for the locally linearized system around steady states for the SPDE. We discretize the full SPDE using a combination of finite-differences and spectral noise approximation obtaining a finite-dimensional system of stochastic ordinary differential equations (SODEs). The large system of SODEs is used to approximate the Lyapunov operator equation via covariance matrices. The covariance matrices are numerically continued along the two bifurcation branches. We show that we can quantify the stochastic fluctuations along the branches. We also demonstrate scaling laws near branch and fold bifurcation points. Furthermore, we perform computational tests to show that, even with a sub-optimal computational setup, we can quantify the subexponential-timescale fluctuations near the deterministic steady states upon stochastic forcing on a standard desktop computer setup. Hence, the proposed method for numerical continuation of SPDEs has the potential to allow for rapid parametric uncertainty quantification of spatio-temporal stochastic systems.Comment: revised version, 30 pages, 11 figures [movie not included due to arXiv size limitations

    Phase-field boundary conditions for the voxel finite cell method: surface-free stress analysis of CT-based bone structures

    Get PDF
    The voxel finite cell method employs unfitted finite element meshes and voxel quadrature rules to seamlessly transfer CT data into patient-specific bone discretizations. The method, however, still requires the explicit parametrization of boundary surfaces to impose traction and displacement boundary conditions, which constitutes a potential roadblock to automation. We explore a phase-field based formulation for imposing traction and displacement constraints in a diffuse sense. Its essential component is a diffuse geometry model generated from metastable phase-field solutions of the Allen-Cahn problem that assumes the imaging data as initial condition. Phase-field approximations of the boundary and its gradient are then employed to transfer all boundary terms in the variational formulation into volumetric terms. We show that in the context of the voxel finite cell method, diffuse boundary conditions achieve the same accuracy as boundary conditions defined over explicit sharp surfaces, if the inherent length scales, i.e., the interface width of the phase-field, the voxel spacing and the mesh size, are properly related. We demonstrate the flexibility of the new method by analyzing stresses in a human femur and a vertebral body

    Robust a priori and a posteriori error analysis for the approximation of Allen–Cahn and Ginzburg–Landau equations past topological changes

    Get PDF
    A priori and a posteriori error estimates are derived for the numerical approximation of scalar and complex valued phase field models. Particular attention is devoted to the dependence of the estimates on a small parameter and to the validity of the estimates in the presence of topological changes in the solution that represents singular points in the evolution. For typical singularities the estimates depend on the inverse of the parameter in a polynomial as opposed to exponential dependence of estimates resulting from a straightforward error analysis. The estimates naturally lead to adaptive mesh refinement and coarsening algorithms. Numerical experiments illustrate the reliability and efficiency of this approach for the evolution of interfaces and vortices that undergo topological changes
    corecore