101 research outputs found

    Analytic Relations between Localizable Entanglement and String Correlations in Spin Systems

    Full text link
    We study the relation between the recently defined localizable entanglement and generalized correlations in quantum spin systems. Differently from the current belief, the localizable entanglement is always given by the average of a generalized string. Using symmetry arguments we show that in most spin 1/2 and spin 1 systems the localizable entanglement reduces to the spin-spin or string correlations, respectively. We prove that a general class of spin 1 systems, which includes the Heisenberg model, can be used as perfect quantum channel. These conclusions are obtained in analytic form and confirm some results found previously on numerical grounds.Comment: 5 pages, RevTeX

    Entanglement and magnetic order

    Full text link
    In recent years quantum statistical mechanics have benefited of cultural interchanges with quantum information science. There is a bulk of evidence that quantifying the entanglement allows a fine analysis of many relevant properties of many-body quantum systems. Here we review the relation between entanglement and the various type of magnetic order occurring in interacting spin systems.Comment: 29 pages, 10 eps figures. Review article for the special issue "Entanglement entropy in extended systems" in J. Phys. A, edited by P. Calabrese, J. Cardy and B. Doyo

    Entanglement in Many-Body Systems

    Get PDF
    The recent interest in aspects common to quantum information and condensed matter has prompted a prosperous activity at the border of these disciplines that were far distant until few years ago. Numerous interesting questions have been addressed so far. Here we review an important part of this field, the properties of the entanglement in many-body systems. We discuss the zero and finite temperature properties of entanglement in interacting spin, fermionic and bosonic model systems. Both bipartite and multipartite entanglement will be considered. At equilibrium we emphasize on how entanglement is connected to the phase diagram of the underlying model. The behavior of entanglement can be related, via certain witnesses, to thermodynamic quantities thus offering interesting possibilities for an experimental test. Out of equilibrium we discuss how to generate and manipulate entangled states by means of many-body Hamiltonians.Comment: 61 pages, 29 figure

    Geometric Entanglement and Quantum Phase Transition in Generalized Cluster-XY models

    Full text link
    In this work, we investigate quantum phase transition (QPT) in a generic family of spin chains using the ground-state energy, the energy gap, and the geometric measure of entanglement (GE). In many of prior works, GE per site was used. Here, we also consider GE per block with each block size being two. This can be regarded as a coarse grain of GE per site. We introduce a useful parameterization for the family of spin chains that includes the XY models with n-site interaction, the GHZ-cluster model and a cluster-antiferromagnetic model, the last of which exhibits QPT between a symmetry-protected topological (SPT) phase and a symmetry-breaking antiferromagnetic phase. As the models are exactly solvable, their ground-state wavefunctions can be obtained and thus their GE can be studied. It turns out that the overlap of the ground states with translationally invariant product states can be exactly calculated and hence the GE can be obtained via further parameter optimization. The QPTs exhibited in these models are detected by the energy gap and singular behavior of geometric entanglement. In particular, the XzY model exhibits transitions from the nontrivial SPT phase to a trivial paramagnetic phase. Moreover, the halfway XY model exhibits a first-order transition across the Barouch-McCoy circle, on which it was only a crossover in the standard XY model.Comment: 29 pages, 12 figure

    The Ongoing Impact of Modular Localization on Particle Theory

    Get PDF
    Modular localization is the concise conceptual formulation of causal localization in the setting of local quantum physics. Unlike QM it does not refer to individual operators but rather to ensembles of observables which share the same localization region, as a result it explains the probabilistic aspects of QFT in terms of the impure KMS nature arising from the local restriction of the pure vacuum. Whereas it played no important role in the perturbation theory of low spin particles, it becomes indispensible for interactions which involve higher spin s1s\geq1 fields, where is leads to the replacement of the operator (BRST) gauge theory setting in Krein space by a new formulation in terms of stringlocal fields in Hilbert space. The main purpose of this paper is to present new results which lead to a rethinking of important issues of the Standard Model concerning massive gauge theories and the Higgs mechanism. We place these new findings into the broader context of ongoing conceptual changes within QFT which already led to new nonperturbative constructions of models of integrable QFTs. It is also pointed out that modular localization does not support ideas coming from string theory, as extra dimensions and Kaluza-Klein dimensional reductions outside quasiclassical approximations. Apart from hologarphic projections on null-surfaces, holograhic relations between QFT in different spacetime dimensions violate the causal completeness property, this includes in particular the Maldacena conjecture. Last not least, modular localization sheds light onto unsolved problems from QFT's distant past since it reveals that the Einstein-Jordan conundrum is really an early harbinger of the Unruh effect.Comment: a small text overlap with unpublished arXiv:1201.632

    Localization and the interface between quantum mechanics, quantum field theory and quantum gravity I (The two antagonistic localizations and their asymptotic compatibility)

    Full text link
    It is shown that there are significant conceptual differences between QM and QFT which make it difficult to view the latter as just a relativistic extension of the principles of QM. At the root of this is a fundamental distiction between Born-localization in QM (which in the relativistic context changes its name to Newton-Wigner localization) and modular localization which is the localization underlying QFT, after one separates it from its standard presentation in terms of field coordinates. The first comes with a probability notion and projection operators, whereas the latter describes causal propagation in QFT and leads to thermal aspects of locally reduced finite energy states. The Born-Newton-Wigner localization in QFT is only applicable asymptotically and the covariant correlation between asymptotic in and out localization projectors is the basis of the existence of an invariant scattering matrix. In this first part of a two part essay the modular localization (the intrinsic content of field localization) and its philosophical consequences take the center stage. Important physical consequences of vacuum polarization will be the main topic of part II. Both parts together form a rather comprehensive presentation of known consequences of the two antagonistic localization concepts, including the those of its misunderstandings in string theory.Comment: 63 pages corrections, reformulations, references adde

    Hidden symmetry breaking in quantum spin systems with applications to measurement-based quantum computation

    Get PDF
    We extend the hidden symmetry breaking picture, first proposed by Kennedy and Tasaki in the context of the Haldane phase, to a wider class of symmetry-protected topological (SPT) phases. We construct a generalization of the Kennedy-Tasaki transformation that transforms SPT phases into symmetry-breaking phases and relates long-range order in the latter to the more subtle “string order” in the former. In doing so we directly connect the form of the Kennedy-Tasaki transformation to the modern formulation of SPT order. We apply our generalized Kennedy-Tasaki transformation to solve the following problem in quantum information theory. We consider the 2-D cluster state, a simple “toy model” of a locally interacting system whose ground state is a universal resource for MBQC. We prove that, in the presence of a perturbation to the interaction Hamiltonian, the perturbed ground state remains a universal resource. We do this by using the generalized Kennedy-Tasaki transformation to prove that, if we employ the techniques of fault-tolerant quantum computation, the ground states of models in an appropriate SPT phases can serve as universal resources for MBQC provided that the symmetry-breaking is sufficiently strong in the symmetry-breaking phase obtained through the generalized Kennedy-Tasaki transformation
    corecore