31,490 research outputs found
Genome sequence of Acetomicrobium hydrogeniformans OS1
Acetomicrobium hydrogeniformans, an obligate anaerobe of the phylum Synergistetes, was isolated from oil production water. It has the unusual ability to produce almost 4 molecules H2/molecule glucose. The draft genome of A. hydrogeniformans OS1 (DSM 22491T) is 2,123,925 bp, with 2,068 coding sequences and 60 RNA genes
The bacillary and macrophage response to hypoxia in tuberculosis and the consequences for T cell antigen recognition
M. tuberculosis is a facultative anaerobe and its characteristic pathological hallmark, the granuloma, exhibits hypoxia in humans and in most experimental models. Thus the host and bacillary adaptation to hypoxia is of central importance in understanding pathogenesis and thereby to derive new drug treatments and vaccines
CERVIS: Cervical Cancer Early Response Visual Identification System
The goal of CERVIS is to make a substantial, positive impact in the cervical cancer screening space through the development of a minimally invasive, cost effective solution that enables women in low-resource settings to test for cervical cancer on a frugal and effective platform. In the developed world, there are a variety of options that can aid in early detection, including Pap smears. However, due to the high cost and laboratory requirements that accompany this procedure, women in low-resource settings rarely have access to this preventative care or regular screenings for cervical cancer. Using new research about the changes in the vaginal microbiome, CERVIS aims to create a frugal, visual diagnostic screening tool for early stage cervical cancer as an alternative to the existing expensive, invasive, and clinic-dependent methods. Outcomes will be measured by partnering with a Kenyan NGO to collect data from several clinics
Anaerobe
Clostridioides difficile is an important organism causing healthcare-associated infections. It has been documented that specific strains caused multiple outbreaks globally, and patients infected with those strains are more likely to develop severe C.\ua0difficile infection (CDI). With the appearance of a variant strain, BI/NAP1 ribotype 027, responsible for several outbreaks and high mortality rates worldwide, the epidemiology of the CDI changed drastically in the United States, Europe, and some Latin American countries. Although the epidemic strain 027 was not yet detected in Brazil, there are ribotypes exclusively found in the country, such as, 131, 132, 133, 135, 142 and 143, which are responsible for outbreaks in Brazilian hospitals and nursing homes. Although PCR-ribotyping is the most used method in epidemiology studies of C.\ua0difficile, it is not available in Brazil. This study aimed to develop and validate an in-house database for detecting C.\ua0difficile ribotypes, usually involved in CDI in Brazilian hospitals, by using MALDI-TOF MS. A database with 19 different ribotypes, 13 with worldwide circulation and 6 Brazilian-restricted, was created based on 27 spectra readings of each ribotype. After BioNumerics analysis, neighbor-joining trees revealed that spectra were distributed in clusters according to ribotypes, showing that MALDI-TOF MS could discriminate all 19 ribotypes. Moreover, each ribotype showed a different profile with 42 biomarkers detected in total. Based on their intensity and occurrence, 13 biomarkers were chosen to compose ribotype-specific profiles, and in silico analysis showed that most of these biomarkers were uncharacterized proteins or well-conserved peptides, such as ribosomal proteins. A double-blind assessment using the 13 biomarkers correctly assigned the ribotype in 73% of the spectra analyzed, with 94%-100% of correct hits for 027 and for Brazilian ribotypes. Although further analyses are required, our results show that MALDI-TOF MS might be a reliable, fast and feasible alternative for epidemiological surveillance of C.\ua0difficile in Brazil.CC999999/ImCDC/Intramural CDC HHSUnited States
Tumor-targeting Salmonella typhimurium A1-R in combination with doxorubicin eradicate soft tissue sarcoma in a patient-derived orthotopic xenograft (PDOX) model.
A patient with high grade undifferentiated pleomorphic soft-tissue sarcoma from a striated muscle was grown orthotopically in the right biceps femoris muscle of mice to establish a patient-derived orthotopic xenograft (PDOX) model. Twenty PDOX mice were divided into 4 groups: G1, control without treatment; G2, Salmonella typhimurium (S. typhimurium)A1-R administered by intratumoral (i.t.) injection once a week for 4 weeks; G3, doxorubicin (DOX) administered by intraperitoneal (i.p.) injection once a week for 4 weeks; G4, S. typhimurium A1-R (i.t.) administered once a week for 2 weeks followed by i.p. doxorubicin once a week for 2 weeks. On day 25 from the initiation of treatment, tumor volume in G2, G3, and G4 was significantly lower than G1. Mice found without gross tumor included one mouse (20%) in G2; one mouse (20%) in G3; and 3 mice (60%) in G4. Body weight loss did not significantly differ between the 3 treated groups or from the untreated control. Histological examination revealed eradication of tumor only in G4 where mice were treated with S. typhimurium A1-R followed by DOX. Our present study indicates future clinical potential of combining S. typhimurium A1-R with chemotherapy such as DOX for soft tissue sarcoma patients
Anaerobe
Community-associated Clostridium difficile infection (CA-CDI) represents 32% of all CDI cases based on U.S. population-based data. The current epidemic strain, NAP1, is the most prevalent strain causing these infections. Although complications, recurrence and death are uncommon, one-fourth of the CA-CDI patients are hospitalized within 7 days after the diagnosis.CC999999/ImCDC/Intramural CDC HHSUnited States
Anaerobe
Clostridioides difficile is a common pathogen that is well known to survive for extended periods of time on environmental healthcare surfaces from fecal contamination. During epidemiological investigations of healthcare-associated infections, it is important to be able to detect whether or not there are viable spores of C.\ua0difficile on surfaces. Current methods to detect C.\ua0difficile can take up to 7 days for culture and in the case of detection by PCR, viability of the spores cannot be ascertained. Prevention of C.\ua0difficile infection in healthcare settings includes adequate cleaning and disinfection of environmental surfaces which increases the likelihood of detecting dead organisms from an environmental sample during an investigation. In this study, we were able to adapt a rapid-viability PCR (RV-PCR) method, first developed for detection of viable Bacillus anthracis spores, for the detection of viable C.\ua0difficile spores. RV-PCR uses the change in cycle threshold after incubation to confirm the presence of live organisms. Using this modified method we were able to detect viable C.\ua0difficile after 22\u202fh of anaerobic incubation in Cycloserine Cefoxitin Fructose Broth (CCFB). This method also used bead beating combined with the Maxwell 16 Casework kit for DNA extraction and purification and a real-time duplex PCR assay for toxin B and cdd3 genes to confirm the identity of the C.\ua0difficile spores. Spiked environmental sponge-wipes with and without added organic load were tested to determine the limit of detection (LOD). The LOD from spiked environmental sponge-wipe samples was 10| spores/mL but after incubation initial spore levels of 10| spores/mL were detected. Use of this method would greatly decrease the amount of time required to detect viable C.\ua0difficile spores; incubation of samples is only required for germination (22\u202fh or less) instead of colony formation, which can take up to 7 days. In addition, PCR can then quickly confirm or deny the identity of the organism at the same time it would confirm viability. The presence of viable C.\ua0difficile spores could be detected at very low levels within 28\u202fh total compared to the 2 to 10-day process that would be needed for culture, identification and toxin detection.CC999999/ImCDC/Intramural CDC HHS/United States2021-02-08T00:00:00Z31330184PMC7869797922
Recommended from our members
Microbial predictors of healing and short-term effect of debridement on the microbiome of chronic wounds.
Chronic wounds represent a large and growing disease burden. Infection and biofilm formation are two of the leading impediments of wound healing, suggesting an important role for the microbiome of these wounds. Debridement is a common and effective treatment for chronic wounds. We analyzed the bacterial content of the wound surface from 20 outpatients with chronic wounds before and immediately after debridement, as well as healthy skin. Given the large variation observed among different wounds, we introduce a Bayesian statistical method that models patient-to-patient variability and identify several genera that were significantly enriched in wounds vs. healthy skin. We found no difference between the microbiome of the original wound surface and that exposed by a single episode of sharp debridement, suggesting that this debridement did not directly alter the wound microbiome. However, we found that aerobes and especially facultative anaerobes were significantly associated with wounds that did not heal within 6 months. The facultative anaerobic genus Enterobacter was significantly associated with lack of healing. The results suggest that an abundance of facultative anaerobes is a negative prognostic factor in the chronic wound microbiome, possibly due to the increased robustness of such communities to different metabolic environments
Response of Selected Microorganisms to Experimental Planetary Environments
Results of studies in anaerobic phosphorus metabolism are presented. Specific topics discussed include: (1) anaerobic utilization of PH3; (2) reduction of phosphate or phosphite; (3) isolation of organisms which utilize phosphite or phosphate anaerobically as a final hydrogen acceptor; and (4) the toxicity of PH3 to the organisms. Techniques of anaerobic microbiology associated with space hardware were also studied. These include: (1) the Brewer anaerobe jar/GasPak system; (2) a new procedure to grow aerobes and anaerobes simultaneously; (3) a culture medium to differentiate oblagate from facultative anaerobes; and (4) a procedure to quantitate O2 sensitivity of anaerobes
- …