2,367 research outputs found

    Prognostics in switching systems: Evidential markovian classification of real-time neuro-fuzzy predictions.

    No full text
    International audienceCondition-based maintenance is nowadays considered as a key-process in maintenance strategies and prognostics appears to be a very promising activity as it should permit to not engage inopportune spending. Various approaches have been developed and data-driven methods are increasingly applied. The training step of these methods generally requires huge datasets since a lot of methods rely on probability theory and/or on artificial neural networks. This step is thus time-consuming and generally made in batch mode which can be restrictive in practical application when few data are available. A method for prognostics is proposed to face up this problem of lack of information and missing prior knowledge. The approach is based on the integration of three complementary modules and aims at predicting the failure mode early while the system can switch between several functioning modes. The three modules are: 1) observation selection based on information theory and Choquet Integral, 2) prediction relying on an evolving real-time neuro-fuzzy system and 3) classification into one of the possible functioning modes using an evidential Markovian classifier based on Dempster-Shafer theory. Experiments concern the prediction of an engine health based on more than twenty observations

    Remaining Useful Life Estimation by ClassiïŹcation of Predictions Based on a Neuro-Fuzzy System and Theory of Belief Functions.

    No full text
    International audienceVarious approaches for prognostics have been developed, and data-driven methods are increasingly applied. The training step of these methods generally requires huge datasets to build a model of the degradation signal, and estimate the limit under which the degradation signal should stay. Applicability and accuracy of these methods are thereby closely related to the amount of available data, and even sometimes requires the user to make assumptions on the dynamics of health states evolution. Following that, the aim of this paper is to propose a method for prognostics and remaining useful life estimation that starts from scratch, without any prior knowledge. Assuming that remaining useful life can be seen as the time between the current time and the instant where the degradation is above an acceptable limit, the proposition is based on a classification of prediction strategy (CPS) that relies on two factors. First, it relies on the use of an evolving real-time neuro-fuzzy system that forecasts observations in time. Secondly, it relies on the use of an evidential Markovian classifier based on Dempster-Shafer theory that enables classifying observations into the possible functioning modes. This approach has the advantage to cope with a lack of data using an evolving system, and theory of belief functions. Also, one of the main assets is the possibility to train the prognostic system without setting any threshold. The whole proposition is illustrated and assessed by using the CMAPPS turbofan dataset. RUL estimates are shown to be very close to actual values, and the approach appears to accurately estimate the failure instants, even with few learning data

    From real data to remaining useful life estimation : an approach combining neuro-fuzzy predictions and evidential Markovian classifications.

    No full text
    International audienceThis paper deals with the proposition of a prognostic approach that enables to face up to the problem of lack of information and missing prior knowledge. Developments rely on the assumption that real data can be gathered from the system (online). The approach consists in three phases. An information theory-based criterion is first used to isolate the most useful observations with regards to the functioning modes of the system (feature selection step). An evolving neuro-fuzzy system is then used for online prediction of observations at any horizons (prediction step). The predicted observations are classified into the possible functioning modes using an evidential Markovian classifier based on Dempster-Shafer theory (classification step). The whole is illustrated on a problem concerning the prediction of an engine health. The approach appears to be very efficient since it enables to early but accurately estimate the failure instant, even with few learning data

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    A spatially distributed model for foreground segmentation

    Get PDF
    Foreground segmentation is a fundamental first processing stage for vision systems which monitor real-world activity. In this paper we consider the problem of achieving robust segmentation in scenes where the appearance of the background varies unpredictably over time. Variations may be caused by processes such as moving water, or foliage moved by wind, and typically degrade the performance of standard per-pixel background models. Our proposed approach addresses this problem by modeling homogeneous regions of scene pixels as an adaptive mixture of Gaussians in color and space. Model components are used to represent both the scene background and moving foreground objects. Newly observed pixel values are probabilistically classified, such that the spatial variance of the model components supports correct classification even when the background appearance is significantly distorted. We evaluate our method over several challenging video sequences, and compare our results with both per-pixel and Markov Random Field based models. Our results show the effectiveness of our approach in reducing incorrect classifications

    Review of Machine Vision Based Insulator Inspection Systems for Overhead Power Distribution System

    Get PDF
    The necessity to have reliable and quality power distribution is increasing, and hence there is great scope for research on automation of distribution system. There are signs of increased research in the work on condition monitoring of insulators during the last few decades. The possible failures can be predicted before they actually occur by using the condition monitoring of cables or any electrical equipment on-line. Those assets such as towers, conductors and insulators which are on the threshold of failure have to be replaced or repaired, so that forced outages reduce. Traditionally the workers who inspect these lines check them in close proximity by going for foot-patrolling and pole-climbing. With an incredible expansion of power distribution network even to remote areas, previously mentioned methods do not seem to be viable. In developed countries aerial patrolling has been adopted to monitor the insulators as an alternative. The development of an efficient method of condition monitoring by using image processing followed by machine learning techniques is found to be a suitable method and thus emerging as a feasible option for real-time implementation. This review paper covers overall aspects of automatic detection of defects of insulator systems of electric power lines and classification into different classes by using vision-based techniques

    Human robot interaction in a crowded environment

    No full text
    Human Robot Interaction (HRI) is the primary means of establishing natural and affective communication between humans and robots. HRI enables robots to act in a way similar to humans in order to assist in activities that are considered to be laborious, unsafe, or repetitive. Vision based human robot interaction is a major component of HRI, with which visual information is used to interpret how human interaction takes place. Common tasks of HRI include finding pre-trained static or dynamic gestures in an image, which involves localising different key parts of the human body such as the face and hands. This information is subsequently used to extract different gestures. After the initial detection process, the robot is required to comprehend the underlying meaning of these gestures [3]. Thus far, most gesture recognition systems can only detect gestures and identify a person in relatively static environments. This is not realistic for practical applications as difficulties may arise from people‟s movements and changing illumination conditions. Another issue to consider is that of identifying the commanding person in a crowded scene, which is important for interpreting the navigation commands. To this end, it is necessary to associate the gesture to the correct person and automatic reasoning is required to extract the most probable location of the person who has initiated the gesture. In this thesis, we have proposed a practical framework for addressing the above issues. It attempts to achieve a coarse level understanding about a given environment before engaging in active communication. This includes recognizing human robot interaction, where a person has the intention to communicate with the robot. In this regard, it is necessary to differentiate if people present are engaged with each other or their surrounding environment. The basic task is to detect and reason about the environmental context and different interactions so as to respond accordingly. For example, if individuals are engaged in conversation, the robot should realize it is best not to disturb or, if an individual is receptive to the robot‟s interaction, it may approach the person. Finally, if the user is moving in the environment, it can analyse further to understand if any help can be offered in assisting this user. The method proposed in this thesis combines multiple visual cues in a Bayesian framework to identify people in a scene and determine potential intentions. For improving system performance, contextual feedback is used, which allows the Bayesian network to evolve and adjust itself according to the surrounding environment. The results achieved demonstrate the effectiveness of the technique in dealing with human-robot interaction in a relatively crowded environment [7]

    Time-Sliced temporal evidential networks : the case of evidential HMM with application to dynamical system analysis.

    No full text
    International audienceDiagnostics and prognostics of health states are important activities in the maintenance process strategy of dynamical systems. Many approaches have been developed for this purpose and we particularly focus on data-driven methods which are increasingly applied due to the availability of various cheap sensors. Most data-driven methods proposed in the literature rely on probability density estimation. However, when the training data are limited, the estimated parameters are no longer reliable. This is particularly true for data in faulty states which are generally expensive and difficult to obtain. In order to solve this problem, we propose to use the theory of belief functions as described by Dempster, Shafer (Theory of Evidence) and Smets (Transferable Belief Model). A few methods based on belief functions have been proposed for diagnostics and prognostics of dynamical systems. Among these methods, Evidential Hidden Markov Models (EvHMM) seems promising and extends usual HMM to belief functions. Inference tools in EvHMM have already been developed, but parameter training has not fully been considered until now or only with strong assumptions. In this paper, we propose to complete the generalization of HMM to belief functions with a method for automatic parameter training. The generalization of this training procedure to more general Time-Sliced Temporal Evidential Network (TSTEN) is discussed paving the way for a further generalization of Dynamic Bayesian Network to belief functions with potential applications to diagnostics and prognostics. An application to time series classification is proposed
    • 

    corecore