19,232 research outputs found
State of the art 2015: a literature review of social media intelligence capabilities for counter-terrorism
Overview
This paper is a review of how information and insight can be drawn from open social media sources. It focuses on the specific research techniques that have emerged, the capabilities they provide, the possible insights they offer, and the ethical and legal questions they raise. These techniques are considered relevant and valuable in so far as they can help to maintain public safety by preventing terrorism, preparing for it, protecting the public from it and pursuing its perpetrators. The report also considers how far this can be achieved against the backdrop of radically changing technology and public attitudes towards surveillance. This is an updated version of a 2013 report paper on the same subject, State of the Art. Since 2013, there have been significant changes in social media, how it is used by terrorist groups, and the methods being developed to make sense of it.
The paper is structured as follows:
Part 1 is an overview of social media use, focused on how it is used by groups of interest to those involved in counter-terrorism. This includes new sections on trends of social media platforms; and a new section on Islamic State (IS).
Part 2 provides an introduction to the key approaches of social media intelligence (henceforth âSOCMINTâ) for counter-terrorism.
Part 3 sets out a series of SOCMINT techniques. For each technique a series of capabilities and insights are considered, the validity and reliability of the method is considered, and how they might be applied to counter-terrorism work explored.
Part 4 outlines a number of important legal, ethical and practical considerations when undertaking SOCMINT work
Online advertising: analysis of privacy threats and protection approaches
Online advertising, the pillar of the âfreeâ content on the Web, has revolutionized the marketing business in recent years by creating a myriad of new opportunities for advertisers to reach potential customers. The current advertising model builds upon an intricate infrastructure composed of a variety of intermediary entities and technologies whose main aim is to deliver personalized ads. For this purpose, a wealth of user data is collected, aggregated, processed and traded behind the scenes at an unprecedented rate. Despite the enormous value of online advertising, however, the intrusiveness and ubiquity of these practices prompt serious privacy concerns. This article surveys the online advertising infrastructure and its supporting technologies, and presents a thorough overview of the underlying privacy risks and the solutions that may mitigate them. We first analyze the threats and potential privacy attackers in this scenario of online advertising. In particular, we examine the main components of the advertising infrastructure in terms of tracking capabilities, data collection, aggregation level and privacy risk, and overview the tracking and data-sharing technologies employed by these components. Then, we conduct a comprehensive survey of the most relevant privacy mechanisms, and classify and compare them on the basis of their privacy guarantees and impact on the Web.Peer ReviewedPostprint (author's final draft
Social Turing Tests: Crowdsourcing Sybil Detection
As popular tools for spreading spam and malware, Sybils (or fake accounts)
pose a serious threat to online communities such as Online Social Networks
(OSNs). Today, sophisticated attackers are creating realistic Sybils that
effectively befriend legitimate users, rendering most automated Sybil detection
techniques ineffective. In this paper, we explore the feasibility of a
crowdsourced Sybil detection system for OSNs. We conduct a large user study on
the ability of humans to detect today's Sybil accounts, using a large corpus of
ground-truth Sybil accounts from the Facebook and Renren networks. We analyze
detection accuracy by both "experts" and "turkers" under a variety of
conditions, and find that while turkers vary significantly in their
effectiveness, experts consistently produce near-optimal results. We use these
results to drive the design of a multi-tier crowdsourcing Sybil detection
system. Using our user study data, we show that this system is scalable, and
can be highly effective either as a standalone system or as a complementary
technique to current tools
Supporting Regularized Logistic Regression Privately and Efficiently
As one of the most popular statistical and machine learning models, logistic
regression with regularization has found wide adoption in biomedicine, social
sciences, information technology, and so on. These domains often involve data
of human subjects that are contingent upon strict privacy regulations.
Increasing concerns over data privacy make it more and more difficult to
coordinate and conduct large-scale collaborative studies, which typically rely
on cross-institution data sharing and joint analysis. Our work here focuses on
safeguarding regularized logistic regression, a widely-used machine learning
model in various disciplines while at the same time has not been investigated
from a data security and privacy perspective. We consider a common use scenario
of multi-institution collaborative studies, such as in the form of research
consortia or networks as widely seen in genetics, epidemiology, social
sciences, etc. To make our privacy-enhancing solution practical, we demonstrate
a non-conventional and computationally efficient method leveraging distributing
computing and strong cryptography to provide comprehensive protection over
individual-level and summary data. Extensive empirical evaluation on several
studies validated the privacy guarantees, efficiency and scalability of our
proposal. We also discuss the practical implications of our solution for
large-scale studies and applications from various disciplines, including
genetic and biomedical studies, smart grid, network analysis, etc
- âŠ