1,157 research outputs found

    Detect-and-Track: Efficient Pose Estimation in Videos

    Full text link
    This paper addresses the problem of estimating and tracking human body keypoints in complex, multi-person video. We propose an extremely lightweight yet highly effective approach that builds upon the latest advancements in human detection and video understanding. Our method operates in two-stages: keypoint estimation in frames or short clips, followed by lightweight tracking to generate keypoint predictions linked over the entire video. For frame-level pose estimation we experiment with Mask R-CNN, as well as our own proposed 3D extension of this model, which leverages temporal information over small clips to generate more robust frame predictions. We conduct extensive ablative experiments on the newly released multi-person video pose estimation benchmark, PoseTrack, to validate various design choices of our model. Our approach achieves an accuracy of 55.2% on the validation and 51.8% on the test set using the Multi-Object Tracking Accuracy (MOTA) metric, and achieves state of the art performance on the ICCV 2017 PoseTrack keypoint tracking challenge.Comment: In CVPR 2018. Ranked first in ICCV 2017 PoseTrack challenge (keypoint tracking in videos). Code: https://github.com/facebookresearch/DetectAndTrack and webpage: https://rohitgirdhar.github.io/DetectAndTrack

    TARGET POSE ESTIMATION VIA DEEP LEARNING FOR MILITARY SYSTEMS

    Get PDF
    Target pose estimation and aimpoint selection is crucial in direct energy weapon systems, as it allows the system to point to a specific and strategic area of the target. However, it is a challenging task because a dedicated attitude sensor is required. Motivated by new emerging deep learning capabilities, the present work proposes a deep learning model to estimate a target spacecraft attitude in terms of Euler angles. Data for the deep learning model were experimentally generated from 3D UAV models, incorporating effects such as atmospheric backgrounds and turbulence. The targets pose was derived from the training, validation, and prediction of 2D keypoints. With a keypoint detection model it is possible to detect interest points in an image, which allows us to estimate pose, angles, and dimensions of the target in question. Utilizing a weak-perspective direct linear transformation algorithm, the pose of a 3D object with respect to a camera from 3D to 2D correspondences could be determined. Additionally, from this correspondence, an aimpoint, mimicking laser tracking could be determined on the target. This work evaluates these methods and their accuracy against experimentally generated data with simulated real-world environments.Outstanding ThesisEnsign, United States NavyApproved for public release. Distribution is unlimited

    ATRW: A Benchmark for Amur Tiger Re-identification in the Wild

    Full text link
    Monitoring the population and movements of endangered species is an important task to wildlife conversation. Traditional tagging methods do not scale to large populations, while applying computer vision methods to camera sensor data requires re-identification (re-ID) algorithms to obtain accurate counts and moving trajectory of wildlife. However, existing re-ID methods are largely targeted at persons and cars, which have limited pose variations and constrained capture environments. This paper tries to fill the gap by introducing a novel large-scale dataset, the Amur Tiger Re-identification in the Wild (ATRW) dataset. ATRW contains over 8,000 video clips from 92 Amur tigers, with bounding box, pose keypoint, and tiger identity annotations. In contrast to typical re-ID datasets, the tigers are captured in a diverse set of unconstrained poses and lighting conditions. We demonstrate with a set of baseline algorithms that ATRW is a challenging dataset for re-ID. Lastly, we propose a novel method for tiger re-identification, which introduces precise pose parts modeling in deep neural networks to handle large pose variation of tigers, and reaches notable performance improvement over existing re-ID methods. The dataset is public available at https://cvwc2019.github.io/ .Comment: ACM Multimedia (MM) 202

    Differentiable Multi-Granularity Human Representation Learning for Instance-Aware Human Semantic Parsing

    Full text link
    To address the challenging task of instance-aware human part parsing, a new bottom-up regime is proposed to learn category-level human semantic segmentation as well as multi-person pose estimation in a joint and end-to-end manner. It is a compact, efficient and powerful framework that exploits structural information over different human granularities and eases the difficulty of person partitioning. Specifically, a dense-to-sparse projection field, which allows explicitly associating dense human semantics with sparse keypoints, is learnt and progressively improved over the network feature pyramid for robustness. Then, the difficult pixel grouping problem is cast as an easier, multi-person joint assembling task. By formulating joint association as maximum-weight bipartite matching, a differentiable solution is developed to exploit projected gradient descent and Dykstra's cyclic projection algorithm. This makes our method end-to-end trainable and allows back-propagating the grouping error to directly supervise multi-granularity human representation learning. This is distinguished from current bottom-up human parsers or pose estimators which require sophisticated post-processing or heuristic greedy algorithms. Experiments on three instance-aware human parsing datasets show that our model outperforms other bottom-up alternatives with much more efficient inference.Comment: CVPR 2021 (Oral). Code: https://github.com/tfzhou/MG-HumanParsin

    Turbo Learning Framework for Human-Object Interactions Recognition and Human Pose Estimation

    Full text link
    Human-object interactions (HOI) recognition and pose estimation are two closely related tasks. Human pose is an essential cue for recognizing actions and localizing the interacted objects. Meanwhile, human action and their interacted objects' localizations provide guidance for pose estimation. In this paper, we propose a turbo learning framework to perform HOI recognition and pose estimation simultaneously. First, two modules are designed to enforce message passing between the tasks, i.e. pose aware HOI recognition module and HOI guided pose estimation module. Then, these two modules form a closed loop to utilize the complementary information iteratively, which can be trained in an end-to-end manner. The proposed method achieves the state-of-the-art performance on two public benchmarks including Verbs in COCO (V-COCO) and HICO-DET datasets.Comment: AAAI201
    • …
    corecore