22 research outputs found
Modes dégradés résultant de l'utilisation multi constellation du GNSS
Actuellement, on constate dans le domaine de la navigation, un besoin croissant de localisation par satellites. Apres une course a l'amelioration de la precision (maintenant proche de quelques centimetres grace a des techniques de lever d'ambiguite sur des mesures de phase), la releve du nouveau defi de l'amelioration de l'integrite du GNSS (GPS, Galileo) est a present engagee. L'integrite represente le degre de confiance que l'on peut placer dans l'exactitude des informations fournies par le systeme, ainsi que la capacite a avertir l'utilisateur d'un dysfonctionnement du GNSS dans un delai raisonnable. Le concept d'integrite du GNSS multi-constellation necessite une coordination au niveau de l'architecture des futurs recepteurs combines (GPS-Galileo). Le fonctionnement d'un tel recepteur dans le cas de passage du systeme multi-constellation en mode degrade est un probleme tres important pour l'integrite de navigation. Cette these se focalise sur les problemes lies a la navigation aeronautique multiconstellation et multi-systeme GNSS. En particulier, les conditions de fourniture de solution de navigation integre sont evaluees durant la phase d'approche APV I (avec guidage vertical). En disposant du GPS existant, du systeme Galileo et d'un systeme complementaire geostationnaire (SBAS), dont les satellites emettent sur des frequences aeronautiques en bande ARNS, la question fondamentale est comment tirer tous les benefices d'un tel systeme multi-constellation pour un recepteur embarque a bord d'un avion civil. En particulier, la question du maintien du niveau de performance durant cette phase de vol APV, en termes de precision, continuite, integrite et disponibilite, lorsque l'une des composantes du systeme est degradee ou perdu, doit etre resolue. L'objectif de ce travail de these est donc d'etudier la capacite d'un recepteur combine avionique d'effectuer la tache de reconfiguration de l'algorithme de traitement apres l'apparition de pannes ou d'interferences dans une partie du systeme GNSS multiconstellation et d'emettre un signal d'alarme dans le cas ou les performances de la partie du systeme non contaminee ne sont pas suffisantes pour continuer l'operation en cours en respectant les exigences de l'aviation civile. Egalement, l'objectif de ce travail est d'etudier les methodes associees a l'execution de cette reconfiguration pour garantir l'utilisation de la partie du systeme GNSS multi-constellation non contaminee dans les meilleures conditions. Cette etude a donc un interet pour les constructeurs des futurs recepteurs avioniques multiconstellation. ABSTRACT : The International Civil Aviation Organization (ICAO) has defined the concept of Global Navigation Satellite System (GNSS), which corresponds to the set of systems allowing to perform satellite-based navigation while fulfilling ICAO requirements. The US Global Positioning Sysem (GPS) is a satellite-based navigation system which constitutes one of the components of the GNSS. Currently, this system broadcasts a civil signal, called L1 C/A, within an Aeronautical Radio Navigation Services (ARNS) band. The GPS is being modernized and will broadcast two new civil signals: L2C (not in an ARNS band) and L5 in another ARNS band. Galileo is the European counterpart of GPS. It will broadcast three signals in an ARNS band: Galileo E1 OS (Open Service) will be transmitted in the GPS L1 frequency band and Galileo E5a and E5b will be broadcasted in the same 960-1215 MHz ARNS band than that of GPS L5. GPS L5 and Galileo E1, E5a, E5b components are expected to provide operational benefits for civil aviation use. However, civil aviation requirements are very stringent and up to now, the bare systems alone cannot be used as a means of navigation. For instance, the GPS standalone does not implement sufficient integrity monitoring. Therefore, in order to ensure the levels of performance required by civil aviation in terms of accuracy, integrity, continuity of service and availability, ICAO standards define different systems/algorithms to augment the basic constellations. GPS, Galileo and the augmentation systems could be combined to comply with the ICAO requirements and complete the lack of GPS or Galileo standalone performance. In order to take benefits of new GNSS signals, and to provide the service level required by the ICAO, the architecture of future combined GNSS receivers must be standardized. The European Organization for Civil Aviation Equipment (EUROCAE) Working Group 62, which is in charge of Galileo standardization for civil aviation in Europe, proposes new combined receivers architectures, in coordination with the Radio Technical Commission for Aeronautics (RTCA). The main objective of this thesis is to contribute to the efforts made by the WG 62 by providing inputs necessary to build future receivers architecture to take benefits of GPS, Galileo and augmentation systems. In this report, we propose some key elements of the combined receivers' architecture to comply with approach phases of flight requirements. In case of perturbation preventing one of the needed GNSS components to meet a phase of flight required performance, it is necessary to be able to switch to another available component in order to try to maintain if possible the level of performance in terms of continuity, integrity, availability and accuracy. That is why future combined receivers must be capable of detecting the impact of perturbations that may lead to the loss of one GNSS component, in order to be able to initiate a switch. These perturbations are mainly atmospheric disturbances, interferences and multipath. In this thesis we focus on the particular cases of interferences and ionosphere perturbations. The interferences are among the most feared events in civil aviation use of GNSS. Detection, estimation and removal of the effect of interference on GNSS signals remain open issues and may affect pseudorange measurements accuracy, as well as integrity, continuity and availability of these measurements. In literature, many different interference detection algorithms have been proposed, at the receiver antenna level, at the front-end level. Detection within tracking loops is not widely studied to our knowledge. That is why, in this thesis, we address the problem of interference detection at the correlators outputs. The particular case of CW interferences detection on the GPS L1 C/A and Galileo E1 OS signals processing is proposed. Nominal dual frequency measurements provide a good estimation of ionospheric delay. In addition, the combination of GPS or GALILEO navigation signals processing at the receiver level is expected to provide important improvements for civil aviation. It could, potentially with augmentations, provide better accuracy and availability of ionospheric correction measurements. Indeed, GPS users will be able to combine GPS L1 and L5 frequencies, and future GALILEO E1 and E5 signals will bring their contribution. However, if affected by a Radio Frequency Interference, a receiver can lose one or more frequencies leading to the use of only one frequency to estimate the ionospheric code delay. Therefore, it is felt by the authors as an important task to investigate techniques aimed at sustaining multi-frequency performance when a multi constellation receiver installed in an aircraft is suddenly affected by radiofrequency interference, during critical phases of flight. This problem is identified for instance in [NATS, 2003]. Consequently, in this thesis, we investigate techniques to maintain dual frequency performances when a frequency is lost (L1 C/A or E1 OS for instance) after an interference occurrence
Challenges in Arctic Navigation and Geospatial Data : User Perspective and Solutions Roadmap
Navigation and location-based applications, including business such as transport, tourism, and mining, in Arctic areas face a variety of specific challenges. In fact, these challenges concern not only the Arctic Circle but certain other areas as well, such as the Gulf of Bothnia. This report provides a review on these challengs which concern a variety of technologies ranging from satellite navigation to telecommunications and mapping.
In order to find out end-users' views on the significance of Arctic challenges, an online survey was conducted. The 77 respondents representing all Arctic countries, the majority being from Finland, highlighted the challenges in telecommunications as well as accuracy concerns for emerging applications dealing with precise navigation.
This report provides a review of possible technologies for addressing the Arctic challenges, based on which a road map for solving them is developed. The road map also uses the results of expert working groups from the Challenges in Arctic Navigation workshop arranged in April 2018 in Olos, Muonio, Finland.
This report was produced within the ARKKI project. It was funded by the Finnish Ministry of Foreign Affairs under the Baltic Sea, Barents and Arctic cooperation programme, and implemented by the Finnish Geospatial Research Institute in collaboration with the Finnish Ministry of Transport and Communications
Global navigation satellite systems performance analysis and augmentation strategies in aviation
In an era of significant air traffic expansion characterized by a rising congestion of the radiofrequency spectrum and a widespread introduction of Unmanned Aircraft Systems (UAS), Global Navigation Satellite Systems (GNSS) are being exposed to a variety of threats including signal interferences, adverse propagation effects and challenging platform-satellite relative dynamics. Thus, there is a need to characterize GNSS signal degradations and assess the effects of interfering sources on the performance of avionics GNSS receivers and augmentation systems used for an increasing number of mission-essential and safety-critical aviation tasks (e.g., experimental flight testing, flight inspection/certification of ground-based radio navigation aids, wide area navigation and precision approach). GNSS signal deteriorations typically occur due to antenna obscuration caused by natural and man-made obstructions present in the environment (e.g., elevated terrain and tall buildings when flying at low altitude) or by the aircraft itself during manoeuvring (e.g., aircraft wings and empennage masking the on-board GNSS antenna), ionospheric scintillation, Doppler shift, multipath, jamming and spurious satellite transmissions. Anyone of these phenomena can result in partial to total loss of tracking and possible tracking errors, depending on the severity of the effect and the receiver characteristics. After designing GNSS performance threats, the various augmentation strategies adopted in the Communication, Navigation, Surveillance/Air Traffic Management and Avionics (CNS + A) context are addressed in detail. GNSS augmentation can take many forms but all strategies share the same fundamental principle of providing supplementary information whose objective is improving the performance and/or trustworthiness of the system. Hence it is of paramount importance to consider the synergies offered by different augmentation strategies including Space Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), Aircraft Based Augmentation System (ABAS) and Receiver Autonomous Integrity Monitoring (RAIM). Furthermore, by employing multi-GNSS constellations and multi-sensor data fusion techniques, improvements in availability and continuity can be obtained. SBAS is designed to improve GNSS system integrity and accuracy for aircraft navigation and landing, while an alternative approach to GNSS augmentation is to transmit integrity and differential correction messages from ground-based augmentation systems (GBAS). In addition to existing space and ground based augmentation systems, GNSS augmentation may take the form of additional information being provided by other on-board avionics systems, such as in ABAS. As these on-board systems normally operate via separate principles than GNSS, they are not subject to the same sources of error or interference. Using suitable data link and data processing technologies on the ground, a certified ABAS capability could be a core element of a future GNSS Space-Ground-Aircraft Augmentation Network (SGAAN). Although current augmentation systems can provide significant improvement of GNSS navigation performance, a properly designed and flight-certified SGAAN could play a key role in trusted autonomous system and cyber-physical system applications such as UAS Sense-and-Avoid (SAA)
Optimal GPS/GALILEO GBAS methodologies with an application to troposphere
In the Civil Aviation domain, research activities aim to improve airspace capacity and efficiency whilst meeting stringent safety targets. These goals are met by improving performance of existing services whilst also expanding the services provided through the development of new Navigation Aids. One such developmental axe is the provision of safer, more reliable approach and landing operations in all weather conditions. The Global Navigation Satellite System (GNSS) has been identified as a key technology in providing navigation services to civil aviation users [1] [2] thanks to its global coverage and accuracy. The GNSS concept includes the provision of an integrity monitoring function by an augmentation system to the core constellations. This is needed to meet the required performances which cannot be met by the stand-alone constellations. One of the three augmentation systems developed within civil aviation is the GBAS (Ground Based Augmentation System) and is currently standardized by the ICAO to provide precision approach navigation services down to Cat I using the GPS or GLONASS constellations [3]. Studies on-going with the objective to extend the GBAS concept to support Cat II/III precision approach operations with GPS L1 C/A, however some difficulties have arisen regarding ionospheric monitoring. With the deployment of Galileo and Beidou alongside the modernization of GPS and GLONASS, it is envisaged that the GNSS future will be multi-constellation (MC) and multi-frequency (MF). European research activities have focused on the use of GPS and Galileo. The MC/MF GBAS concept should lead to many improvements such as a better modelling of atmospheric effects but several challenges must be resolved before the potential benefits may be realized. Indeed, this PhD has addressed two key topics relating to GBAS, the provision of corrections data within the MC/MF GBAS concept and the impact of tropospheric biases on both the SC/SF and MC/MF GBAS concepts. Due to the tight constraints on GBAS ground to air communications link, the VDB unit, a novel approach is needed. One of the proposals discussed in the PhD project for an updated GBAS VDB message structure is to separate message types for corrections with different transmission rates. Then, this PhD argues that atmospheric modelling with regards to the troposphere has been neglected in light of the ionospheric monitoring difficulties and must be revisited for both nominal and anomalous scenarios. The thesis focuses on how to compute the worst case differential tropospheric delay offline in order to characterize the threat model before extending previous work on bounding this threat in order to protect the airborne GBAS user. In the scope of MC/MF GBAS development, an alternative approach was needed. Therefore, in this PhD project, Numerical Weather Models (NWMs) are used to assess fully the worst case horizontal component of the troposphere. An innovative worst case horizontal tropospheric gradient search methodology is used to determine the induced ranging biases impacting aircraft performing Cat II/III precision approaches with GBAS. This provides as an output a worst case bias as a function of elevation for two European regions.The vertical component is also modelled by statistical analysis by comparing the truth data to the GBAS standardized model for vertical tropospheric correction up to the height of the aircraft. A model of the total uncorrected differential bias is generated which must be incorporated within the nominal GBAS protection levels. In order to bound the impact of the troposphere on the positioning error and by maintaining the goal of low data transmission, different solutions have been developed which remain conservative by assuming that ranging biases conspire in the worst possible way. Through these techniques, it has been shown that a minimum of 3 parameters may be used to characterize a region’s model
Use of GNSS signals and their augmentations for Civil Aviation navigation during Approaches with Vertical Guidance and Precision Approaches
Since many years, civil aviation has identified GNSS as an attractive mean to provide navigation services for every phase of flight due to its wide coverage area. However, to do so, GNSS has to meet relevant requirements in terms of accuracy, integrity, availability and continuity. To achieve this performance, augmentation systems have been developed to correct the GNSS signals and to monitor the quality of the received Signal-In-Space (SIS). We can distinguish GBAS (Ground Based Augmentation Systems), ABAS (Airborne Based Augmentation Systems) SBAS (Satellite Based Augmentation Systems). In this context, the aim of this study is to characterize and evaluate the GNSS position error of various positioning solutions which may fulfil applicable civil aviation requirements for GNSS approaches. In particular, this study focuses on two particular solutions which are: • Combined GPS/GALILEO receivers augmented by RAIM where RAIM is a type of ABAS augmentation. This solution is a candidate to provide a mean to conduct approaches with vertical guidance (APV I, APV II and LPV 200). • GPS L1 C/A receivers augmented by GBAS. This solution should allow to conduct precision approaches down to CAT II/III, thus providing an alternative to classical radio navigation solutions such as ILS. This study deals with the characterization of the statistics of the position error at the output of these GNSS receivers. It is organised as following. First a review of civil aviation requirements is presented. Then, the different GNSS signals structure and the associated signal processing selected are described. We only considered GPS and GALILEO constellations and concentrated on signals suitable for civil aviation receivers. The next section details the GNSS measurement models used to model the measurements made by civil aviation receivers using the previous GNSS signals. The following chapter presents the GPS/GALILEO and RAIM combination model developed as well as our conclusions on the statistics of the resulting position error. The last part depicts the GBAS NSE (Navigation System Error) model proposed in this report as well as the rationales for this model
Technical and economic viability of the implementation of approach systems (radio aids) in regional airfields (Viseu airfield case study)
Despite all the efforts made by various institutions towards aeronautical safety, accidents and
incidents are likely to happen at any time and under any circumstance. Around half of these
accidents, at a commercial level, tend to occur during the approach and landing phases.
Approach systems were developed with the main objective to improve the safety index in these
flight phases, reducing the inherent risks of its complexity. This equipment can be categorised
as precision providing course guidance and glidepath and non-precision providing course
guidance only.
When we talk about air transportation, it’s hard not to associate the theme to the big airports
in the world. Despite of them representing a crucial part of all the aeronautical industry,
regional airports and airfields can’t be ignored, because they also reach unmatchable levels of
importance for the people and the regions they represent.
The case study utilised was Viseu airfield, and to confirm its importance for the region, the
biggest local companies were inquired. After 19 answers, it was possible to confirm the
relevance the airfield has or could have, being the preferential choice compared to the
international airports of Oporto and Lisbon.
The main objective of this work was to demonstrate to what extent the implementation of one
of those approach systems in the airfield is viable, and which one would be the better option
for this case, from a technical and economic view. The systems analysed for this study were ILS
and GBAS, both precision equipment.
After a technical and economic analysis, revealing the technical characteristics of the airfield,
as well as its revenue from the charged fees, allied with an 80% funded project with a six-year
investment recovery forecast, it was concluded that GBAS would be the most suitable option.
GLS approach charts were then elaborated, based on already existing GNSS charts in the
airfield.Apesar de todos os esforços desenvolvidos pelas várias instituições dedicadas à segurança
aeronáutica, acidentes e incidentes continuam a ocorrer, independentemente de qualquer
circunstância e momento. Cerca de metade desses acidentes, a nÃvel comercial, verificam-se
essencialmente durante as fases de aproximação e aterragem. Os sistemas de aproximação
foram projetados com o objetivo principal de aumentar os Ãndices de segurança nessas fases do
voo, reduzindo os riscos inerentes à sua complexidade. Esses equipamentos podem ser divididos
em sistemas de precisão (orientação lateral e vertical fornecida) e de não precisão (somente
orientação lateral fornecida).
Quando falamos de transporte aéreo, é difÃcil não associarmos o tema aos grandes aeroportos
distribuÃdos pelo mundo. Apesar de eles representarem uma parte crucial de toda a indústria
aeronáutica, não podemos deixar de relevar os aeroportos e aeródromos regionais, pois estes
também alcançam nÃveis inigualáveis de importância para as pessoas e regiões que
representam.
O caso de estudo utilizado foi o aeródromo de Viseu, e para confirmar a sua importância para
a região, foram inquiridas as maiores empresas locais. Após 19 respostas, foi possÃvel confirmar
a relevância que tem ou poderia ter o aeródromo, tendo sido este a escolha preferencial em
comparação com os aeroportos internacionais do Porto e Lisboa.
O principal objetivo deste trabalho foi demonstrar até que ponto a implementação de um desses
sistemas de aproximação no aeródromo é viável, e qual seria a melhor opção para este caso
quer do ponto de vista técnico quer económico. Os sistemas analisados para este estudo foram
o ILS e GBAS, ambos equipamentos de precisão.
Depois de uma análise técnica e económica, relevando as caracterÃsticas técnicas do
aeródromo, bem como as suas receitas provenientes das taxas cobradas, conciliadas com um
projeto financiado em cerca de 80% e com uma previsão de recuperação do investimento em
seis anos, concluiu-se que o GBAS seria a opção mais indicada. Posto isto, foram elaboradas
cartas de aproximação GLS com base em cartas GNSS já existentes no aeródromo
Utilisation des signaux GNSS et de leurs augmentations pour l'Aviation Civile lors d'approches avec guidage vertical et d'approches de précision
Since many years, civil aviation has identified GNSS as an attractive mean to provide navigation services for every phase of flight due to its wide coverage area. However, to do so, GNSS has to meet relevant requirements in terms of accuracy, integrity, availability and continuity. To achieve this performance, augmentation systems have been developed to correct the GNSS signals and to monitor the quality of the received Signal-In-Space (SIS). We can distinguish GBAS (Ground Based Augmentation Systems), ABAS (Airborne Based Augmentation Systems) SBAS (Satellite Based Augmentation Systems). In this context, the aim of this study is to characterize and evaluate the GNSS position error of various positioning solutions which may fulfil applicable civil aviation requirements for GNSS approaches. In particular, this study focuses on two particular solutions which are: • Combined GPS/GALILEO receivers augmented by RAIM where RAIM is a type of ABAS augmentation. This solution is a candidate to provide a mean to conduct approaches with vertical guidance (APV I, APV II and LPV 200). • GPS L1 C/A receivers augmented by GBAS. This solution should allow to conduct precision approaches down to CAT II/III, thus providing an alternative to classical radio navigation solutions such as ILS. This study deals with the characterization of the statistics of the position error at the output of these GNSS receivers. It is organised as following. First a review of civil aviation requirements is presented. Then, the different GNSS signals structure and the associated signal processing selected are described. We only considered GPS and GALILEO constellations and concentrated on signals suitable for civil aviation receivers. The next section details the GNSS measurement models used to model the measurements made by civil aviation receivers using the previous GNSS signals. The following chapter presents the GPS/GALILEO and RAIM combination model developed as well as our conclusions on the statistics of the resulting position error. The last part depicts the GBAS NSE (Navigation System Error) model proposed in this report as well as the rationales for this model.La navigation par satellite, Global Navigation Satellite System, a été reconnue comme une solution prometteuse afin de fournir des services de navigation aux utilisateurs de l'Aviation Civile. Ces dernières années, le GNSS est devenu l'un des moyens de navigation de référence, son principal avantage étant sa couverture mondiale. Cette tendance globale est visible à bord des avions civils puisqu'une majorité d'entre eux est désormais équipée de récepteurs GNSS. Cependant, les exigences de l'Aviation Civile sont suffisamment rigoureuses et contraignantes en termes de précision de continuité, de disponibilité et d'intégrité pour que les récepteurs GPS seuls ne puissent être utilisés comme unique moyen de navigation. Cette réalité a mené à la définition de plusieurs architectures visant à augmenter les constellations GNSS. Nous pouvons distinguer les SBAS (Satellite Based Augmentation Systems), les GBAS (Ground Based Augmentation Systems), et les ABAS (Aircraft Based Augmentation Systems). Cette thèse étudie le comportement de l'erreur de position en sortie d'architectures de récepteur qui ont été identifiées comme étant très prometteuses pour les applications liées à l'Aviation civile
Integration of ARAIM technique for integrity performance prediction, procedures development and pre-flight operations
Advanced Receiver Autonomous Integrity Monitoring (ARAIM) is a new Aircraft Based Augmentation System (ABAS) technique, firstly presented in the two reports of the GNSS Evolutionary Architecture Study (GEAS). The ARAIM technique offers the opportunity to enable GNSS receivers to serve as a primary means of navigation, worldwide, for precision approach down to LPV-200 operation, while at the same time potentially reducing the support which has to be provided by Ground and Satellite Based Augmented Systems (GBAS and SBAS).
Previous work analysed ARAIM performance, clearly showing the potential of this new architectures to provide the Required Navigation Performance down to LPV 200 approach procedures. However, almost all of the studies have been performed with respect to fixed points on a grid on the Earth’s surface, with full view of the sky, evaluating ARAIM performance from a geometrical point of view and using nominal performance in simulated scenarios which last several days. Though, the operational configuration was not examined; attitude changes from manoeuvres, obscuration by the aircraft body and shadowing from the surrounding environment could all affect the incoming signal from the GNSS constellations, leading to configurations that could adversely affect the real performance.
In this research, ARAIM performances in simulated operational configurations are presented. Four different algorithms were developed that integrate the ARAIM technique for performance prediction analysis. These algorithms could usefully be implemented:
• In the design of instrument approach procedures. The algorithms could be used to improve the procedure of the development of new instrument approaches, reducing time, effort and costs.
• In the aircraft Flight Management Systems. The algorithms could support the pilots in the pre-flight briefing, highlighting possible integrity outage in advance and allowing them to select a different approach or making them aware of the need to utilise additional positioning systems.
Increased awareness and better pre-flight planning could ultimately improve the safety of flights and contribute to the safe introduction of GNSS as a viable positioning method for instrument approach.
The results showed that the aircraft attitude and the surrounding environment affect the performance of the ARAIM algorithm; each satellite lost generates a peak in the performance parameters that depends on the total number of satellites in view, their relative geometry and on the number of satellites lost at the same time. The main outcome of this research is the identification that the ideal scenario would be to have a tri-constellation system that provides at the same time high redundancy, reliability and increased safety margin
Integration of ARAIM technique for integrity performance prediction, procedures development and pre-flight operations
Advanced Receiver Autonomous Integrity Monitoring (ARAIM) is a new Aircraft Based Augmentation System (ABAS) technique, firstly presented in the two reports of the GNSS Evolutionary Architecture Study (GEAS). The ARAIM technique offers the opportunity to enable GNSS receivers to serve as a primary means of navigation, worldwide, for precision approach down to LPV-200 operation, while at the same time potentially reducing the support which has to be provided by Ground and Satellite Based Augmented Systems (GBAS and SBAS).
Previous work analysed ARAIM performance, clearly showing the potential of this new architectures to provide the Required Navigation Performance down to LPV 200 approach procedures. However, almost all of the studies have been performed with respect to fixed points on a grid on the Earth’s surface, with full view of the sky, evaluating ARAIM performance from a geometrical point of view and using nominal performance in simulated scenarios which last several days. Though, the operational configuration was not examined; attitude changes from manoeuvres, obscuration by the aircraft body and shadowing from the surrounding environment could all affect the incoming signal from the GNSS constellations, leading to configurations that could adversely affect the real performance.
In this research, ARAIM performances in simulated operational configurations are presented. Four different algorithms were developed that integrate the ARAIM technique for performance prediction analysis. These algorithms could usefully be implemented:
• In the design of instrument approach procedures. The algorithms could be used to improve the procedure of the development of new instrument approaches, reducing time, effort and costs.
• In the aircraft Flight Management Systems. The algorithms could support the pilots in the pre-flight briefing, highlighting possible integrity outage in advance and allowing them to select a different approach or making them aware of the need to utilise additional positioning systems.
Increased awareness and better pre-flight planning could ultimately improve the safety of flights and contribute to the safe introduction of GNSS as a viable positioning method for instrument approach.
The results showed that the aircraft attitude and the surrounding environment affect the performance of the ARAIM algorithm; each satellite lost generates a peak in the performance parameters that depends on the total number of satellites in view, their relative geometry and on the number of satellites lost at the same time. The main outcome of this research is the identification that the ideal scenario would be to have a tri-constellation system that provides at the same time high redundancy, reliability and increased safety margin