35,128 research outputs found
Prenatal Nicotine Exposure as a Teratogen in Neurological Pathways
Attention-deficit/hyperactivity disorder (ADHD) is the most heritable and commonly diagnosed childhood psychiatric disorder with 4% of all children being diagnosed with this disorder. Prenatal smoking has been found to be a risk factor for ADHD, a disorder that has been believed to be linked to the fluctuation of dopamine levels. Prenatal nicotine exposure in the second trimester influences dopaminergic neurological pathways by altering dopamine release levels. The altered dopamine levels make the fetus brain more sensitive to the nicotine, causing the nicotine exposure to be more dangerous in causing ADHD symptoms. Prenatal nicotine exposure alters the neurological pathway of the neurotransmitters, ACh and dopamine, not only in the fetus but later in adolescence too. When nicotine enters the body, it is distributed quickly through the bloodstream and into the Central Nervous System (CNS). Cigarette smoke interferes with customary placental function, and therefore the flow of nutrients and oxygen. The nAChRs increases the amount of dopamine released in the synaptic area. Functional changes in DRD4 receptors and in dopamine transporter number caused by genetic variations and prenatal smoking exposure results in changes in dopamine release; however, the relationship between prenatal nicotine exposure and ADHD symptoms was not changed by sociodemographic factors. Interventions should be set-up in order to urge women to quit smoking during their pregnancy. The present study has health significance in that the research will urge pregnant women to be cautious of smoking through proposed interventions
Could dopamine agonists aid in drug development for anorexia nervosa?
Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways
Effect of hyperthyroidism on circulating prolactin and hypothalamic expression of tyrosine hydroxylase, prolactin signaling cascade members and estrogen and progesterone receptors during late pregnancy and lactation in the rat
Hyperthyroidism (HyperT) compromises pregnancy and lactation, hindering suckling-induced PRL release. We studied the effect of HyperT on hypothalamic mRNA (RT-qPCR) and protein (Western blot) expression of tyrosine hydroxylase (TH), PRL receptor (PRLR) and signaling pathway members, estrogen-α (ERα) and progesterone (PR) receptors on late pregnancy (days G19, 20 and 21) and early lactation (L2) in rats. HyperT advanced pre-partum PRL release, reduced circulating PRL on L2 and increased TH mRNA (G21 and L2), p-TH, PRLR mRNA, STAT5 protein (G19 and L2), PRLR protein (G21) and CIS protein (G19). PRs mRNAs and protein decreased on G19 but afterwards PRA mRNA (G20), PRB mRNA (G21) and PRA mRNA and protein (L2) increased. ERα protein increased on G19 and decreased on G20. Thus, the altered hypothalamic PRLR, STAT5, PR and ERα expression in hyperthyroid rats may induce elevated TH expression and activation, that consequently, elevate dopaminergic tone during lactation, blunting suckling-induced PRL release and litter growth.Fil: Pennacchio, Gisela Erika. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto de Medicina y BiologĂa Experimental de Cuyo; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Neira, Flavia Judith. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto de Medicina y BiologĂa Experimental de Cuyo; ArgentinaFil: Soaje, Marta. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto de Medicina y BiologĂa Experimental de Cuyo; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias MĂ©dicas; ArgentinaFil: Jahn, Graciela Alma. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto de Medicina y BiologĂa Experimental de Cuyo; ArgentinaFil: Valdez, Susana Ruth. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Mendoza. Instituto de Medicina y BiologĂa Experimental de Cuyo; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentin
Dopaminergic Regulation of Neuronal Circuits in Prefrontal Cortex
Neuromodulators, like dopamine, have considerable influence on the\ud
processing capabilities of neural networks. \ud
This has for instance been shown in the working memory functions\ud
of prefrontal cortex, which may be regulated by altering the\ud
dopamine level. Experimental work provides evidence on the biochemical\ud
and electrophysiological actions of dopamine receptors, but there are few \ud
theories concerning their significance for computational properties \ud
(ServanPrintzCohen90,Hasselmo94).\ud
We point to experimental data on neuromodulatory regulation of \ud
temporal properties of excitatory neurons and depolarization of inhibitory \ud
neurons, and suggest computational models employing these effects.\ud
Changes in membrane potential may be modelled by the firing threshold,\ud
and temporal properties by a parameterization of neuronal responsiveness \ud
according to the preceding spike interval.\ud
We apply these concepts to two examples using spiking neural networks.\ud
In the first case, there is a change in the input synchronization of\ud
neuronal groups, which leads to\ud
changes in the formation of synchronized neuronal ensembles.\ud
In the second case, the threshold\ud
of interneurons influences lateral inhibition, and the switch from a \ud
winner-take-all network to a parallel feedforward mode of processing.\ud
Both concepts are interesting for the modeling of cognitive functions and may\ud
have explanatory power for behavioral changes associated with dopamine \ud
regulation
Circadian Rhythm Abnormalities in Parkinson's Disease from Humans to Flies and Back
Clinical and research studies have suggested a link between Parkinson\u2019s disease (PD) and alterations in the circadian clock. Drosophila melanogaster may represent a useful model to study the relationship between the circadian clock and PD. Apart from the conservation of many genes, cellular mechanisms, signaling pathways, and neuronal processes, Drosophila shows an organized central nervous system and well-characterized complex behavioral phenotypes. In fact, Drosophila has been successfully used in the dissection of the circadian system and as a model for neurodegenerative disorders, including PD. Here, we describe the fly circadian and dopaminergic systems and report recent studies which indicate the presence of circadian abnormalities in some fly PD genetic models. We discuss the use of Drosophila to investigate whether, in adults, the disruption of the circadian system might be causative of brain neurodegeneration. We also consider approaches using Drosophila, which might provide new information on the link between PD and the circadian clock. As a corollary, since PD develops its symptomatology over a large part of the organism\u2019s lifespan and given the relatively short lifespan of fruit flies, we suggest that genetic models of PD could be used to perform lifelong screens for drug-modulators of general and/or circadian-related PD traits
Effects of methamphetamine on locomotor activity and thalamic gene expression in leptin-deficient obese mice
Leptin is an adipose-derived hormone that regulates energy balance. Leptin receptors are expressed in extrahypothalamic sites and several reports showed that leptin can influence feeding and locomotor behavior via direct actions on dopaminergic neurons. The leptin deficient mouse (ob/ob) has been used as an animal model of blunted leptin action, and presents with obesity and mild type 2 diabetes. We used ob/ob mice to study the effect of repeated 7-day methamphetamine (METH) administration analyzing locomotion, behavioral sensitization, and somatosensory thalamic mRNA expression of voltage-gated calcium channels and glutamatergic receptors using RT-PCR. We observed reduced METH-mediated responses in ob/ob mice associated with enhanced in mRNA expression of key voltage-gated and glutamate receptors in the somatosensory thalamus. Results described here are important for understanding the control of locomotion and thalamocortical excitability by leptin.Fil: Gonzalez, Betina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones FarmacolĂłgicas. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de Investigaciones FarmacolĂłgicas; ArgentinaFil: Gonzalez, Candela Rocio. Universidad MaimĂłnides. Ărea de Investigaciones BiomĂ©dicas y BiotecnolĂłgicas. Centro de Estudios BiomĂ©dicos, BiotecnolĂłgicos, Ambientales y de DiagnĂłstico; ArgentinaFil: Bisagno, Veronica. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones FarmacolĂłgicas. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de Investigaciones FarmacolĂłgicas; ArgentinaFil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂa, BiologĂa Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂa, BiologĂa Molecular y Neurociencias; Argentin
Recommended from our members
The Effects of Neurosteroids, such as Pregnenolone Sulfate and its receptor, TrpM3 in the Retina.
Pregnenolone sulfate (PregS) is the precursor to all steroid hormones and is produced in neurons in an activity dependent manner. Studies have shown that PregS production is upregulated during certain critical periods of development, such as in the first year of life in humans, during adolescence, and during pregnancy. Conversely, PregS is decreased during aging, as well as in several neurodevelopmental and neurodegenerative conditions. There are several known targets of PregS, such as a positive allosteric modulator NMDA receptors, sigma1 receptor, and as a negative allosteric modulator of GABA-A receptors. Recently a transient receptor potential channel, TrpM3 has been shown to be activated by PregS. TrpM3 is a heat sensitive (between 33-40oC), non-selective cation channel that is outwardly rectifying. PregS has been shown to increase the frequency of post-synaptic currents in the hippocampus and developing cerebellum, induce calcium transients in a subset of retinal ganglion cells, and enhance memory formation in rodents. Furthermore, PregS mediated TrpM3 activation induces calcium dependent transcription of early immediate genes, suggesting that activation of this channel may produce lasting effects on cells and systems in which it is activated. Because PregS is abundant during critical periods of development, we hypothesized that it may play a significant role during development. Furthermore, the role of PregS or its receptor TrpM3, has not previously been well characterized in the retina. To address this question, in this dissertation, we examine the role of the neurosteroid PregS and its receptor, TrpM3, on retinal waves, which are characteristic of specific stages of synaptic development and connectivity. Briefly, we show that PregS induces a TrpM3 dependent prolonged calcium transient, which is absent in the TrpM3-/- animals and increases the correlation of cell participation in waves. We also show that TrpM3 increases the frequency of post-synaptic currents, indicating a mechanism of action presynaptic to retinal ganglion cells, but that TrpM3 is expressed primarily in RGCs and MĂŒller glia. Taken together, our results indicate that both PregS and TrpM3 are important in modulating spontaneous synaptic activity during development
Catecholamines and cognition after traumatic brain injury
Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a personâs catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain ânetworksâ that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner
A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice
BACKGROUND: Parkinson's disease (PD), the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression or the A53T missense mutation of the presynaptic protein alpha-synuclein (SNCA). PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used two mouse lines overexpressing human A53T-SNCA and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. To characterize the progression, we employed young adult as well as old mice. Analysis of striatal neurotransmitter content demonstrated that dopamine (DA) levels correlated directly with the level of expression of SNCA, an observation also made in SNCA-deficient (knockout, KO) mice. However, the elevated DA levels in the striatum of old A53T-SNCA overexpressing mice may not be transmitted appropriately, in view of three observations. First, a transcriptional downregulation of the extraneural DA degradation enzyme catechol-ortho-methytransferase (COMT) was found. Second, an upregulation of DA receptors was detected by immunoblots and autoradiography. Third, extensive transcriptome studies via microarrays and quantitative real-time RT-PCR (qPCR) of altered transcript levels of the DA-inducible genes Atf2, Cb1, Freq, Homer1 and Pde7b indicated a progressive and genotype-dependent reduction in the postsynaptic DA response. As a functional consequence, long term depression (LTD) was absent in corticostriatal slices from old transgenic mice. CONCLUSIONS/SIGNIFICANCE: Taken together, the dysfunctional neurotransmission and impaired synaptic plasticity seen in the A53T-SNCA overexpressing mice reflect early changes within the basal ganglia prior to frank neurodegeneration. As a model of preclinical stages of PD, such insights may help to develop neuroprotective therapeutic approaches
- âŠ