2,721,848 research outputs found
Heating the Solar Atmosphere by the Self-Enhanced Thermal Waves Caused by the Dynamo Processes
We discuss a possible mechanism for heating the solar atmosphere by the
ensemble of thermal waves, generated by the photospheric dynamo and propagating
upwards with increasing magnitudes. These waves are self-sustained and
amplified due to the specific dependence of the efficiency of heat release by
Ohmic dissipation on the ratio of the collisional to gyro- frequencies, which
in its turn is determined by the temperature profile formed in the wave. In the
case of sufficiently strong driving, such a mechanism can increase the plasma
temperature by a few times, i.e. it may be responsible for heating the
chromosphere and the base of the transition region.Comment: v2: A number of minor corrections and additional explanations.
AASTeX, 5 pages, 2 EPS figures, submitted to The Astrophysical Journa
Improved Distributed Algorithms for Exact Shortest Paths
Computing shortest paths is one of the central problems in the theory of
distributed computing. For the last few years, substantial progress has been
made on the approximate single source shortest paths problem, culminating in an
algorithm of Becker et al. [DISC'17] which deterministically computes
-approximate shortest paths in time, where
is the hop-diameter of the graph. Up to logarithmic factors, this time
complexity is optimal, matching the lower bound of Elkin [STOC'04].
The question of exact shortest paths however saw no algorithmic progress for
decades, until the recent breakthrough of Elkin [STOC'17], which established a
sublinear-time algorithm for exact single source shortest paths on undirected
graphs. Shortly after, Huang et al. [FOCS'17] provided improved algorithms for
exact all pairs shortest paths problem on directed graphs.
In this paper, we present a new single-source shortest path algorithm with
complexity . For polylogarithmic , this improves
on Elkin's bound and gets closer to the
lower bound of Elkin [STOC'04]. For larger values of
, we present an improved variant of our algorithm which achieves complexity
, and
thus compares favorably with Elkin's bound of in essentially the entire range of parameters. This
algorithm provides also a qualitative improvement, because it works for the
more challenging case of directed graphs (i.e., graphs where the two directions
of an edge can have different weights), constituting the first sublinear-time
algorithm for directed graphs. Our algorithm also extends to the case of exact
-source shortest paths...Comment: 26 page
Model of Multi-branch Trees for Efficient Resource Allocation
Although exploring the principles of resource allocation is still important in many fields, little is known about appropriate methods for optimal resource allocation thus far. This is because we should consider many issues including opposing interests between many types of stakeholders. Here, we develop a new allocation method to resolve budget conflicts. To do so, we consider two points—minimizing assessment costs and satisfying allocational efficiency. In our method, an evaluator's assessment is restricted to one's own projects in one's own department, and both an executive's and mid-level executives' assessments are also restricted to each representative project in each branch or department they manage. At the same time, we develop a calculation method to integrate such assessments by using a multi-branch tree structure, where a set of leaf nodes represents projects and a set of non-leaf nodes represents either directors or executives. Our method is incentive-compatible because no director has any incentive to make fallacious assessments
Algorithms and Bounds for Very Strong Rainbow Coloring
A well-studied coloring problem is to assign colors to the edges of a graph
so that, for every pair of vertices, all edges of at least one shortest
path between them receive different colors. The minimum number of colors
necessary in such a coloring is the strong rainbow connection number
(\src(G)) of the graph. When proving upper bounds on \src(G), it is natural
to prove that a coloring exists where, for \emph{every} shortest path between
every pair of vertices in the graph, all edges of the path receive different
colors. Therefore, we introduce and formally define this more restricted edge
coloring number, which we call \emph{very strong rainbow connection number}
(\vsrc(G)).
In this paper, we give upper bounds on \vsrc(G) for several graph classes,
some of which are tight. These immediately imply new upper bounds on \src(G)
for these classes, showing that the study of \vsrc(G) enables meaningful
progress on bounding \src(G). Then we study the complexity of the problem to
compute \vsrc(G), particularly for graphs of bounded treewidth, and show this
is an interesting problem in its own right. We prove that \vsrc(G) can be
computed in polynomial time on cactus graphs; in contrast, this question is
still open for \src(G). We also observe that deciding whether \vsrc(G) = k
is fixed-parameter tractable in and the treewidth of . Finally, on
general graphs, we prove that there is no polynomial-time algorithm to decide
whether \vsrc(G) \leq 3 nor to approximate \vsrc(G) within a factor
, unless PNP
Flip Graphs of Degree-Bounded (Pseudo-)Triangulations
We study flip graphs of triangulations whose maximum vertex degree is bounded
by a constant . In particular, we consider triangulations of sets of
points in convex position in the plane and prove that their flip graph is
connected if and only if ; the diameter of the flip graph is .
We also show that, for general point sets, flip graphs of pointed
pseudo-triangulations can be disconnected for , and flip graphs of
triangulations can be disconnected for any . Additionally, we consider a
relaxed version of the original problem. We allow the violation of the degree
bound by a small constant. Any two triangulations with maximum degree at
most of a convex point set are connected in the flip graph by a path of
length , where every intermediate triangulation has maximum degree
at most .Comment: 13 pages, 12 figures, acknowledgments update
A Spanner for the Day After
We show how to construct -spanner over a set of
points in that is resilient to a catastrophic failure of nodes.
Specifically, for prescribed parameters , the
computed spanner has edges, where . Furthermore, for any , and
any deleted set of points, the residual graph is -spanner for all the points of except for
of them. No previous constructions, beyond the trivial clique
with edges, were known such that only a tiny additional fraction
(i.e., ) lose their distance preserving connectivity.
Our construction works by first solving the exact problem in one dimension,
and then showing a surprisingly simple and elegant construction in higher
dimensions, that uses the one-dimensional construction in a black box fashion
Area-Universal Rectangular Layouts
A rectangular layout is a partition of a rectangle into a finite set of
interior-disjoint rectangles. Rectangular layouts appear in various
applications: as rectangular cartograms in cartography, as floorplans in
building architecture and VLSI design, and as graph drawings. Often areas are
associated with the rectangles of a rectangular layout and it might hence be
desirable if one rectangular layout can represent several area assignments. A
layout is area-universal if any assignment of areas to rectangles can be
realized by a combinatorially equivalent rectangular layout. We identify a
simple necessary and sufficient condition for a rectangular layout to be
area-universal: a rectangular layout is area-universal if and only if it is
one-sided. More generally, given any rectangular layout L and any assignment of
areas to its regions, we show that there can be at most one layout (up to
horizontal and vertical scaling) which is combinatorially equivalent to L and
achieves a given area assignment. We also investigate similar questions for
perimeter assignments. The adjacency requirements for the rectangles of a
rectangular layout can be specified in various ways, most commonly via the dual
graph of the layout. We show how to find an area-universal layout for a given
set of adjacency requirements whenever such a layout exists.Comment: 19 pages, 16 figure
Map Matching with Simplicity Constraints
We study a map matching problem, the task of finding in an embedded graph a
path that has low distance to a given curve in R^2. The Fr\'echet distance is a
common measure for this problem. Efficient methods exist to compute the best
path according to this measure. However, these methods cannot guarantee that
the result is simple (i.e. it does not intersect itself) even if the given
curve is simple. In this paper, we prove that it is in fact NP-complete to
determine the existence a simple cycle in a planar straight-line embedding of a
graph that has at most a given Fr\'echet distance to a given simple closed
curve. We also consider the implications of our proof on some variants of the
problem
Harmonious Hilbert curves and other extradimensional space-filling curves
This paper introduces a new way of generalizing Hilbert's two-dimensional
space-filling curve to arbitrary dimensions. The new curves, called harmonious
Hilbert curves, have the unique property that for any d' < d, the d-dimensional
curve is compatible with the d'-dimensional curve with respect to the order in
which the curves visit the points of any d'-dimensional axis-parallel space
that contains the origin. Similar generalizations to arbitrary dimensions are
described for several variants of Peano's curve (the original Peano curve, the
coil curve, the half-coil curve, and the Meurthe curve). The d-dimensional
harmonious Hilbert curves and the Meurthe curves have neutral orientation: as
compared to the curve as a whole, arbitrary pieces of the curve have each of d!
possible rotations with equal probability. Thus one could say these curves are
`statistically invariant' under rotation---unlike the Peano curves, the coil
curves, the half-coil curves, and the familiar generalization of Hilbert curves
by Butz and Moore.
In addition, prompted by an application in the construction of R-trees, this
paper shows how to construct a 2d-dimensional generalized Hilbert or Peano
curve that traverses the points of a certain d-dimensional diagonally placed
subspace in the order of a given d-dimensional generalized Hilbert or Peano
curve.
Pseudocode is provided for comparison operators based on the curves presented
in this paper.Comment: 40 pages, 10 figures, pseudocode include
A structural approach to kernels for ILPs: Treewidth and Total Unimodularity
Kernelization is a theoretical formalization of efficient preprocessing for
NP-hard problems. Empirically, preprocessing is highly successful in practice,
for example in state-of-the-art ILP-solvers like CPLEX. Motivated by this,
previous work studied the existence of kernelizations for ILP related problems,
e.g., for testing feasibility of Ax <= b. In contrast to the observed success
of CPLEX, however, the results were largely negative. Intuitively, practical
instances have far more useful structure than the worst-case instances used to
prove these lower bounds.
In the present paper, we study the effect that subsystems with (Gaifman graph
of) bounded treewidth or totally unimodularity have on the kernelizability of
the ILP feasibility problem. We show that, on the positive side, if these
subsystems have a small number of variables on which they interact with the
remaining instance, then we can efficiently replace them by smaller subsystems
of size polynomial in the domain without changing feasibility. Thus, if large
parts of an instance consist of such subsystems, then this yields a substantial
size reduction. We complement this by proving that relaxations to the
considered structures, e.g., larger boundaries of the subsystems, allow
worst-case lower bounds against kernelization. Thus, these relaxed structures
can be used to build instance families that cannot be efficiently reduced, by
any approach.Comment: Extended abstract in the Proceedings of the 23rd European Symposium
on Algorithms (ESA 2015
- …