1,599 research outputs found

    Potential and Limitations of Open Satellite Data for Flood Mapping

    Get PDF
    Satellite remote sensing is a powerful tool to map flooded areas. In recent years, the availability of free satellite data significantly increased in terms of type and frequency, allowing the production of flood maps at low cost around the world. In this work, we propose a semi-automatic method for flood mapping, based only on free satellite images and open-source software. The proposed methods are suitable to be applied by the community involved in flood hazard management, not necessarily experts in remote sensing processing. As case studies, we selected three flood events that recently occurred in Spain and Italy. Multispectral satellite data acquired by MODIS, Proba-V, Landsat, and Sentinel-2 and synthetic aperture radar (SAR) data collected by Sentinel-1 were used to detect flooded areas using different methodologies (e.g., Modified Normalized Difference Water Index, SAR backscattering variation, and supervised classification). Then, we improved and manually refined the automatic mapping using free ancillary data such as the digital elevation model-based water depth model and available ground truth data. We calculated flood detection performance (flood ratio) for the different datasets by comparing with flood maps made by official river authorities. The results show that it is necessary to consider different factors when selecting the best satellite data. Among these factors, the time of the satellite pass with respect to the flood peak is the most important. With co-flood multispectral images, more than 90% of the flooded area was detected in the 2015 Ebro flood (Spain) case study. With post-flood multispectral data, the flood ratio showed values under 50% a few weeks after the 2016 flood in Po and Tanaro plains (Italy), but it remained useful to map the inundated pattern. The SAR could detect flooding only at the co-flood stage, and the flood ratio showed values below 5% only a few days after the 2016 Po River inundation. Another result of the research was the creation of geomorphology-based inundation maps that matched up to 95% with official flood maps

    Urban geomorphology of a historical city straddling the Tanaro River (Alessandria, NW Italy)

    Get PDF
    The integration of \ufb01eld surveys, bibliographic research and multitemporal analysis of historical maps, aerial photographs and satellite images in a GIS environment, allowed the current and past geomorphological features of the old city of Alessandria and its surrounding areas, NW Italy, to be identi\ufb01ed and mapped. Their analysis provided an overview of the geomorphological evolution of the city that is strictly related to the historical vicissitudes occurred since the Middle Ages. Nowadays, the most representative landforms and deposits characterizing the urban landscape result from human interventions and are associated with ancient military facilities and infrastructures, a historical man-made channel network no longer recognizable, the Tanaro riverbed channelization, and the urban sprawl occurred from the second half of the nineteenth century onwards. This study represents a useful tool for urban planning and management and for raising the citizens\u2019 awareness of the urbanlandscape geomorphological features and evolution, and therefore the geo-hydrological risk

    Platform-basin transitions and their role in Alpine-style collision systems : a comparative approach

    Get PDF
    CB acknowledges financial support from Optimus (Aberdeen) ltd. Petroceltic International plc are thanked for providing access to the subsurface data used in this study and for permission to publish images used here. Schlumberger are thanked for providing use of Petrel software under their academic agreement with the University of Aberdeen. RWHB thanks the organisers of the 12th Emile Argand Conference on Alpine Geological Studies for the invitation and financial support to participate in the Montgenevre workshop. Reviewers Enrico Tavarnelli, Thierry Dumont and editors Christian Sue and Stefan Schmid are all thanked for their comments that have significantly improved this contribution.Peer reviewedPublisher PD

    Ben Snook, The Anglo-Saxon chancery: the history, language and production of Anglo-Saxon charters from Alfred to Edgar

    Get PDF
    No abstract available

    Index of Proportional Risk (IRP) Flood-Risk Assessment Model and Comparison to Collected Data

    Get PDF
    After the publication of the flood directive hazard and risk maps, risk assessment and risk evaluation became useful tools to set priorities for flood management and for countermeasure financing. Regione Piemonte, in collaboration with Politecnico di Torino and University of Turin, proposed a procedure for risk assessment (named IRP model, Index of Proportional Risk), already applied in different case studies. The comparison among the obtained results and the collected data on damages recorded during the recent 2016 flood in Piemonte region showed the effectiveness of the IRP procedure for the quantitative assessment of direct damages. The IRP model can also be usefully applied to the revision and the updating of flood directive risk maps and to assess the cost/benefit ratio of the designed countermeasures (National Repository for Soil defense (Re.N.Di.S.) procedure)
    corecore