871,657 research outputs found

    Road traffic pollution monitoring and modelling tools and the UK national air quality strategy.

    Get PDF
    This paper provides an assessment of the tools required to fulfil the air quality management role now expected of local authorities within the UK. The use of a range of pollution monitoring tools in assessing air quality is discussed and illustrated with evidence from a number of previous studies of urban background and roadside pollution monitoring in Leicester. A number of approaches to pollution modelling currently available for deployment are examined. Subsequently, the modelling and monitoring tools are assessed against the requirements of Local Authorities establishing Air Quality Management Areas. Whilst the paper examines UK based policy, the study is of wider international interest

    Matrix Completion With Variational Graph Autoencoders: Application in Hyperlocal Air Quality Inference

    Get PDF
    Inferring air quality from a limited number of observations is an essential task for monitoring and controlling air pollution. Existing inference methods typically use low spatial resolution data collected by fixed monitoring stations and infer the concentration of air pollutants using additional types of data, e.g., meteorological and traffic information. In this work, we focus on street-level air quality inference by utilizing data collected by mobile stations. We formulate air quality inference in this setting as a graph-based matrix completion problem and propose a novel variational model based on graph convolutional autoencoders. Our model captures effectively the spatio-temporal correlation of the measurements and does not depend on the availability of additional information apart from the street-network topology. Experiments on a real air quality dataset, collected with mobile stations, shows that the proposed model outperforms state-of-the-art approaches

    Participatory Patterns in an International Air Quality Monitoring Initiative

    Get PDF
    The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution.Comment: 17 pages, 6 figures, 1 supplementary fil

    Fine Particulate Matter and Ozone Air Quality in Western Pennsylvania in the 2000s

    Get PDF
    Presents data on the area's particulate matter, ozone, and emissions levels and air pollution sources. Examines air quality compared with the rest of the nation, links between premature death and harmful levels of air pollution, and monitoring networks

    Realtime Profiling of Fine-Grained Air Quality Index Distribution using UAV Sensing

    Full text link
    Given significant air pollution problems, air quality index (AQI) monitoring has recently received increasing attention. In this paper, we design a mobile AQI monitoring system boarded on unmanned-aerial-vehicles (UAVs), called ARMS, to efficiently build fine-grained AQI maps in realtime. Specifically, we first propose the Gaussian plume model on basis of the neural network (GPM-NN), to physically characterize the particle dispersion in the air. Based on GPM-NN, we propose a battery efficient and adaptive monitoring algorithm to monitor AQI at the selected locations and construct an accurate AQI map with the sensed data. The proposed adaptive monitoring algorithm is evaluated in two typical scenarios, a two-dimensional open space like a roadside park, and a three-dimensional space like a courtyard inside a building. Experimental results demonstrate that our system can provide higher prediction accuracy of AQI with GPM-NN than other existing models, while greatly reducing the power consumption with the adaptive monitoring algorithm
    • …
    corecore