116 research outputs found

    Logical Modeling of Adiabatic Logic Circuits Using VHDL

    Get PDF
    The underlying nature of adiabatic circuits is most accurately characterized at the circuit level as it is for traditional technologies. In order to scale system designs for adiabatic logic technologies, modeling of adiabatic circuits at the logic level is necessary. Logic level models of adiabatic logic circuits can facilitate the design, development, and verification of large scale digital systems that may be infeasible using circuit simulators. Adiabatic logic circuits can be powered with a four stage power clock consisting of idle, charge, hold, and recover stages that provides for adiabatic charging and charge recovery to give adiabatic circuits their low power operation. By both discretizing the temporal aspects of the power clock and the logic values, a logical model of adiabatic circuit operation is proposed. Using the expressive capabilities of Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL), the salient aspects of adiabatic circuit models can be captured. In this work, a VHDL framework is defined for modeling adiabatic logic circuits & systems and its use is demonstrated in several example adiabatic logic circuits

    Design of Adiabatic MTJ-CMOS Hybrid Circuits

    Full text link
    Low-power designs are a necessity with the increasing demand of portable devices which are battery operated. In many of such devices the operational speed is not as important as battery life. Logic-in-memory structures using nano-devices and adiabatic designs are two methods to reduce the static and dynamic power consumption respectively. Magnetic tunnel junction (MTJ) is an emerging technology which has many advantages when used in logic-in-memory structures in conjunction with CMOS. In this paper, we introduce a novel adiabatic hybrid MTJ/CMOS structure which is used to design AND/NAND, XOR/XNOR and 1-bit full adder circuits. We simulate the designs using HSPICE with 32nm CMOS technology and compared it with a non-adiabatic hybrid MTJ/CMOS circuits. The proposed adiabatic MTJ/CMOS full adder design has more than 7 times lower power consumtion compared to the previous MTJ/CMOS full adder

    Mott insulating phases and quantum phase transitions of interacting spin-3/2 fermionic cold atoms in optical lattices at half filling

    Full text link
    We study various Mott insulating phases of interacting spin-3/2 fermionic ultracold atoms in two-dimensional square optical lattices at half filling. Using a generalized one-band Hubbard model with hidden SO(5) symmetry, we identify two distinct symmetry breaking phases: the degenerate antiferromagnetic spin-dipole/spin-octupole ordering and spin-quadrupole ordering, depending on the sign of the spin-dependent interaction. These two competing orders exhibit very different symmetry properties, low energy excitations and topological characterizations. Near the SU(4) symmetric point, a quantum critical state with a π\pi -flux phase may emerge due to strong quantum fluctuations, leading to spin algebraic correlations and gapless excitations.Comment: 11 pages, 4 figure

    Observation of the ground-state-geometric phase in a Heisenberg XY model

    Full text link
    Geometric phases play a central role in a variety of quantum phenomena, especially in condensed matter physics. Recently, it was shown that this fundamental concept exhibits a connection to quantum phase transitions where the system undergoes a qualitative change in the ground state when a control parameter in its Hamiltonian is varied. Here we report the first experimental study using the geometric phase as a topological test of quantum transitions of the ground state in a Heisenberg XY spin model. Using NMR interferometry, we measure the geometric phase for different adiabatic circuits that do not pass through points of degeneracy.Comment: manuscript (4 pages, 3 figures) + supporting online material (6 pages + 7 figures), to be published in Phys. Rev. Lett. (2010

    Design of Two Phase Sinusoidal Power Clock using Adiabatic Switching

    Get PDF
    "Adiabatic" is a term of Greek origin that has spent most of its history associated with classical thermodynamics. It refers to a system in which a transition occurs without energy usually in the form of heat being either lost to or gained from the system. In the context of electronic systems, rather than heat, electronic charge is preserved. Thus, an ideal adiabatic circuit would operate without the loss or gain of electronic charge. Hence, in this work the two phase sinusoidal power clock is designed using Adiabatic switching

    Students’ acceptance towards kahoot application in mastering culinary terminology

    Get PDF
    Kahoot! is a game-based learning platform used to review students’ knowledge, for formative assessment and provides an opportunity not only to assess students' conceptual understanding but also to build new knowledge through further clarification during or after the game. The objective of this study is to assess the acceptability of culinary students in the use of Kahoot! application for mastery the culinary terminology. This study aimed to identify students' acceptance of learning applications, to identify students' acceptance of Kahoot! use in terms of memory as well as students' level of mastering Kahoot! in the learning process. This study is a descriptive study that used a five-point Likert scale questionnaire as an instrument. A total of 48 second year students from the Catering program were used as the study sample. The collected data were analyzed using Statistical Package for Social Science Version 23.0 for Windows (SPSS). The results show that the aspect of students' level of mastering the culinary terminology using Kahoot! application is high with a mean score of 4.55. Whereas the students’ acceptance of Kahoot! as a learning application, was also high with a mean score of 4.44. Finally, the students’ acceptance of the culinary terminology tested using Kahoot! is high with a mean score of 4.45

    Investigation of the power-clock network impact on adiabatic logic

    Get PDF
    International audienceAdiabatic logic is architecture design style which seems to be a good candidate to reduce the power consumption of digital cores. One key difference is that the power supply is also the clock signal. A lot of work on different adiabatic logic families has been done but the impact of the power supply and the power-clock network still remains to be studied. In this paper, we investigate the power-clock network effect on adiabatic energy dissipation. We derive closed-form analytical formulas to represent the output signal voltage and energy dissipation while taking into account the parasitic impedance of the power-clock network with respect to switching frequency such that adiabatic conditions are still met. Experiments, based on simulation, show that the power-clock network impacts both the energy efficiency of the circuit and its frequency
    • …