4,231 research outputs found
Addressing the Node Discovery Problem in Fog Computing
In recent years, the Internet of Things (IoT) has gained a lot of attention due to connecting various sensor devices with the cloud, in order to enable smart applications such as: smart traffic management, smart houses, and smart grids, among others. Due to the growing popularity of the IoT, the number of Internet-connected devices has increased significantly. As a result, these devices generate a huge amount of network traffic which may lead to bottlenecks, and eventually increase the communication latency with the cloud. To cope with such issues, a new computing paradigm has emerged, namely: fog computing. Fog computing enables computing that spans from the cloud to the edge of the network in order to distribute the computations of the IoT data, and to reduce the communication latency. However, fog computing is still in its infancy, and there are still related open problems. In this paper, we focus on the node discovery problem, i.e., how to add new compute nodes to a fog computing system. Moreover, we discuss how addressing this problem can have a positive impact on various aspects of fog computing, such as fault tolerance, resource heterogeneity, proximity awareness, and scalability. Finally, based on the experimental results that we produce by simulating various distributed compute nodes, we show how addressing the node discovery problem can improve the fault tolerance of a fog computing system
Addressing the Challenges in Federating Edge Resources
This book chapter considers how Edge deployments can be brought to bear in a
global context by federating them across multiple geographic regions to create
a global Edge-based fabric that decentralizes data center computation. This is
currently impractical, not only because of technical challenges, but is also
shrouded by social, legal and geopolitical issues. In this chapter, we discuss
two key challenges - networking and management in federating Edge deployments.
Additionally, we consider resource and modeling challenges that will need to be
addressed for a federated Edge.Comment: Book Chapter accepted to the Fog and Edge Computing: Principles and
Paradigms; Editors Buyya, Sriram
A Taxonomy for Management and Optimization of Multiple Resources in Edge Computing
Edge computing is promoted to meet increasing performance needs of
data-driven services using computational and storage resources close to the end
devices, at the edge of the current network. To achieve higher performance in
this new paradigm one has to consider how to combine the efficiency of resource
usage at all three layers of architecture: end devices, edge devices, and the
cloud. While cloud capacity is elastically extendable, end devices and edge
devices are to various degrees resource-constrained. Hence, an efficient
resource management is essential to make edge computing a reality. In this
work, we first present terminology and architectures to characterize current
works within the field of edge computing. Then, we review a wide range of
recent articles and categorize relevant aspects in terms of 4 perspectives:
resource type, resource management objective, resource location, and resource
use. This taxonomy and the ensuing analysis is used to identify some gaps in
the existing research. Among several research gaps, we found that research is
less prevalent on data, storage, and energy as a resource, and less extensive
towards the estimation, discovery and sharing objectives. As for resource
types, the most well-studied resources are computation and communication
resources. Our analysis shows that resource management at the edge requires a
deeper understanding of how methods applied at different levels and geared
towards different resource types interact. Specifically, the impact of mobility
and collaboration schemes requiring incentives are expected to be different in
edge architectures compared to the classic cloud solutions. Finally, we find
that fewer works are dedicated to the study of non-functional properties or to
quantifying the footprint of resource management techniques, including
edge-specific means of migrating data and services.Comment: Accepted in the Special Issue Mobile Edge Computing of the Wireless
Communications and Mobile Computing journa
ENORM: A Framework For Edge NOde Resource Management
Current computing techniques using the cloud as a centralised server will
become untenable as billions of devices get connected to the Internet. This
raises the need for fog computing, which leverages computing at the edge of the
network on nodes, such as routers, base stations and switches, along with the
cloud. However, to realise fog computing the challenge of managing edge nodes
will need to be addressed. This paper is motivated to address the resource
management challenge. We develop the first framework to manage edge nodes,
namely the Edge NOde Resource Management (ENORM) framework. Mechanisms for
provisioning and auto-scaling edge node resources are proposed. The feasibility
of the framework is demonstrated on a PokeMon Go-like online game use-case. The
benefits of using ENORM are observed by reduced application latency between 20%
- 80% and reduced data transfer and communication frequency between the edge
node and the cloud by up to 95\%. These results highlight the potential of fog
computing for improving the quality of service and experience.Comment: 14 pages; accepted to IEEE Transactions on Services Computing on 12
September 201
Fog-enabled Edge Learning for Cognitive Content-Centric Networking in 5G
By caching content at network edges close to the users, the content-centric
networking (CCN) has been considered to enforce efficient content retrieval and
distribution in the fifth generation (5G) networks. Due to the volume,
velocity, and variety of data generated by various 5G users, an urgent and
strategic issue is how to elevate the cognitive ability of the CCN to realize
context-awareness, timely response, and traffic offloading for 5G applications.
In this article, we envision that the fundamental work of designing a cognitive
CCN (C-CCN) for the upcoming 5G is exploiting the fog computing to
associatively learn and control the states of edge devices (such as phones,
vehicles, and base stations) and in-network resources (computing, networking,
and caching). Moreover, we propose a fog-enabled edge learning (FEL) framework
for C-CCN in 5G, which can aggregate the idle computing resources of the
neighbouring edge devices into virtual fogs to afford the heavy delay-sensitive
learning tasks. By leveraging artificial intelligence (AI) to jointly
processing sensed environmental data, dealing with the massive content
statistics, and enforcing the mobility control at network edges, the FEL makes
it possible for mobile users to cognitively share their data over the C-CCN in
5G. To validate the feasibility of proposed framework, we design two
FEL-advanced cognitive services for C-CCN in 5G: 1) personalized network
acceleration, 2) enhanced mobility management. Simultaneously, we present the
simulations to show the FEL's efficiency on serving for the mobile users'
delay-sensitive content retrieval and distribution in 5G.Comment: Submitted to IEEE Communications Magzine, under review, Feb. 09, 201
Orchestrating Service Migration for Low Power MEC-Enabled IoT Devices
Multi-Access Edge Computing (MEC) is a key enabling technology for Fifth
Generation (5G) mobile networks. MEC facilitates distributed cloud computing
capabilities and information technology service environment for applications
and services at the edges of mobile networks. This architectural modification
serves to reduce congestion, latency, and improve the performance of such edge
colocated applications and devices. In this paper, we demonstrate how reactive
service migration can be orchestrated for low-power MEC-enabled Internet of
Things (IoT) devices. Here, we use open-source Kubernetes as container
orchestration system. Our demo is based on traditional client-server system
from user equipment (UE) over Long Term Evolution (LTE) to the MEC server. As
the use case scenario, we post-process live video received over web real-time
communication (WebRTC). Next, we integrate orchestration by Kubernetes with S1
handovers, demonstrating MEC-based software defined network (SDN). Now, edge
applications may reactively follow the UE within the radio access network
(RAN), expediting low-latency. The collected data is used to analyze the
benefits of the low-power MEC-enabled IoT device scheme, in which end-to-end
(E2E) latency and power requirements of the UE are improved. We further discuss
the challenges of implementing such schemes and future research directions
therein
- …