235 research outputs found
A roadmap to integrate astrocytes into Systems Neuroscience.
Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease
Overview on cognitive impairment in psychotic disorders: from impaired microcircuits to dysconnectivity
Schizophrenia's cognitive deficits, often overshadowed by positive symptoms, significantly contribute to the disorder's morbidity. Increasing attention highlights these deficits as reflections of neural circuit dysfunction across various cortical regions. Numerous connectivity alterations linked to cognitive symptoms in psychotic disorders have been reported, both at the macroscopic and microscopic level, emphasizing the potential role of plasticity and microcircuits impairment during development and later stages. However, the heterogeneous clinical presentation of cognitive impairment and diverse connectivity findings pose challenges in summarizing them into a cohesive picture. This review aims to synthesize major cognitive alterations, recent insights into network structural and functional connectivity changes and proposed mechanisms and microcircuit alterations underpinning these symptoms, particularly focusing on neurodevelopmental impairment, E/I balance, and sleep disturbances. Finally, we will also comment on some of the most recent and promising therapeutic approaches that aim to target these mechanisms to address cognitive symptoms. Through this comprehensive exploration, we strive to provide an updated and nuanced overview of the multiscale connectivity impairment underlying cognitive impairment in psychotic disorders.The project that gave rise to these results received the support of a fellowship from “la Caixa” foundation “(ID 100010434)”. The fellowship code is: “(LCF/BQ/DI19/11730048)”, and financed L.M. work. M.S. is a fellow of Eurecat's “Vicente Lopez ´ ” PhD grant program. M.V.V. was supported by the Grant/Award Number: PID2020-119072RA-I00/AEI/ 10.13039/501100011033 financed by the Spanish Ministry of Science, Innovation and Universities (MCIU), State Research Agency (AEI). This last institution also financed M.V.V trough the Grant/Award Number: PID2020-119072RA-I00/AEI/10.13039/501100011033. G.D. was supported by the project NEurological MEchanismS of Injury, and Sleep-like cellular dynamics (NEMESIS) (ref. 101071900) funded by the EU ERC Synergy Horizon Europe, by the NODYN Project PID2022-136216NBI00 financed by the MCIN/AEI/10.13039/501100011033/FEDER, UE., the Ministry of Science and Innovation, the Spanish State Research Agency and the European Regional Development Fund, by the AGAUR research support grant (ref. 2021 SGR 00917) funded by the Department of Research and Universities of the Generalitat de Catalunya, and by the project eBRAIN-Health - Actionable Multilevel Health Data (id 101058516), funded by the EU Horizon Europe.Postprint (published version
The influence of dopamine on prediction, action and learning
In this thesis I explore functions of the neuromodulator dopamine in the context
of autonomous learning and behaviour. I first investigate dopaminergic influence
within a simulated agent-based model, demonstrating how modulation of
synaptic plasticity can enable reward-mediated learning that is both adaptive and
self-limiting. I describe how this mechanism is driven by the dynamics of agentenvironment
interaction and consequently suggest roles for both complex spontaneous
neuronal activity and specific neuroanatomy in the expression of early, exploratory
behaviour. I then show how the observed response of dopamine neurons
in the mammalian basal ganglia may also be modelled by similar processes involving
dopaminergic neuromodulation and cortical spike-pattern representation within
an architecture of counteracting excitatory and inhibitory neural pathways, reflecting
gross mammalian neuroanatomy. Significantly, I demonstrate how combined
modulation of synaptic plasticity and neuronal excitability enables specific (timely)
spike-patterns to be recognised and selectively responded to by efferent neural populations,
therefore providing a novel spike-timing based implementation of the hypothetical
‘serial-compound’ representation suggested by temporal difference learning.
I subsequently discuss more recent work, focused upon modelling those complex
spike-patterns observed in cortex. Here, I describe neural features likely to contribute
to the expression of such activity and subsequently present novel simulation
software allowing for interactive exploration of these factors, in a more comprehensive
neural model that implements both dynamical synapses and dopaminergic
neuromodulation. I conclude by describing how the work presented ultimately suggests
an integrated theory of autonomous learning, in which direct coupling of agent
and environment supports a predictive coding mechanism, bootstrapped in early
development by a more fundamental process of trial-and-error learning
The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields
The cortex is a complex system, characterized by its dynamics and architecture,
which underlie many functions such as action, perception, learning, language,
and cognition. Its structural architecture has been studied for more than a
hundred years; however, its dynamics have been addressed much less thoroughly.
In this paper, we review and integrate, in a unifying framework, a variety of
computational approaches that have been used to characterize the dynamics of the
cortex, as evidenced at different levels of measurement. Computational models at
different space–time scales help us understand the fundamental
mechanisms that underpin neural processes and relate these processes to
neuroscience data. Modeling at the single neuron level is necessary because this
is the level at which information is exchanged between the computing elements of
the brain; the neurons. Mesoscopic models tell us how neural elements interact
to yield emergent behavior at the level of microcolumns and cortical columns.
Macroscopic models can inform us about whole brain dynamics and interactions
between large-scale neural systems such as cortical regions, the thalamus, and
brain stem. Each level of description relates uniquely to neuroscience data,
from single-unit recordings, through local field potentials to functional
magnetic resonance imaging (fMRI), electroencephalogram (EEG), and
magnetoencephalogram (MEG). Models of the cortex can establish which types of
large-scale neuronal networks can perform computations and characterize their
emergent properties. Mean-field and related formulations of dynamics also play
an essential and complementary role as forward models that can be inverted given
empirical data. This makes dynamic models critical in integrating theory and
experiments. We argue that elaborating principled and informed models is a
prerequisite for grounding empirical neuroscience in a cogent theoretical
framework, commensurate with the achievements in the physical sciences
Recommended from our members
29th Annual Computational Neuroscience Meeting: CNS*2020
Meeting abstracts
This publication was funded by OCNS. The Supplement Editors declare that they have no competing interests.
Virtual | 18-22 July 202
Optical tracking of nerve activity using intrinsic changes in birefringence
Changes in birefringence (or dynamic birefringence) provide an arguably cleaner method of measuring IOS as compared to scattering methods. Other imaging methods have substantial limitations. Nerves inherently exhibit a static (rest condition) birefringence that is associated with the structural anisotropies of axonal protein filaments, membrane phospholipids and proteins, as well as surrounding tissues, which include Schwann cells and axon sheaths. The dynamic birefringence, or “crossed-polarized signal” (XPS), in neurons arises from activity in axons and occurs with a rapid momentary change, typically a decrease, in the birefringence when action potentials (APs) propagate along them.
We improved the signal-to-noise to make detecting this signal an easier task, and present the XPS as a viable candidate for detecting AP activity in anisotropic nervous tissue. Our data collectively serves as a strong indication that there is a capacitive-charging-like effect directly inducing a gradual recovery (long tail) of the XPS to baseline, and also causing a smoothing of the XPS trace. A setup was constructed that successfully demonstrated the feasibility of tracking propagating compound APs in a peripheral nerve using the XPS. We made significant progress in the attempt to investigate birefringence of myelination. For the first time, the XPS in a myelinated tissue was detected, and it appears to be bipolar in nature. Further work in investigating the nature of this signal is needed, and is currently underway.
Since changes in birefringence in neurons are associated instantaneously with electrophysiological phenomena, they are well-suited for fast imaging of propagating action potentials in neuronal tissue. In summary, imaging based on polarization sensing of changes in birefringence offers promise for an improved noninvasive method of detecting and tracking AP activity in myelinated and unmyelinated nerves and could be designed for pre-clinical and surgical applications
Dynamics of biologically informed neural mass models of the brain
This book contributes to the development and analysis of computational models that help brain function to be understood. The mean activity of a brain area is mathematically modeled in such a way as to strike a balance between tractability and biological plausibility. Neural mass models (NMM) are used to describe switching between qualitatively different regimes (such as those due to pharmacological interventions, epilepsy, sleep, or context-induced state changes), and to explain resonance phenomena in a photic driving experiment. The description of varying states in an ordered sequence gives a principle scheme for the modeling of complex phenomena on multiple time scales. The NMM is matched to the photic driving experiment routinely applied in the diagnosis of such diseases as epilepsy, migraine, schizophrenia and depression. The model reproduces the clinically relevant entrainment effect and predictions are made for improving the experimental setting.Die vorliegende Arbeit stellt einen Beitrag zur Entwicklung und Analyse von
Computermodellen zum Verständnis von Hirnfunktionen dar. Es wird die
mittlere Aktivität eines Hirnareals analytisch einfach und dabei
biologisch plausibel modelliert. Auf Grundlage eines Neuronalen
Massenmodells (NMM) werden die Wechsel zwischen Oszillationsregimen (z.B.
durch pharmakologisch, epilepsie-, schlaf- oder kontextbedingte
Zustandsänderungen) als geordnete Folge beschrieben und Resonanzphänomene
in einem Photic-Driving-Experiment erklärt. Dieses NMM kann sehr komplexe
Dynamiken (z.B. Chaos) innerhalb biologisch plausibler Parameterbereiche
hervorbringen. Um das Verhalten abzuschätzen, wird das NMM als Funktion
konstanter Eingangsgrößen und charakteristischer Zeitenkonstanten
vollständig auf Bifurkationen untersucht und klassifiziert. Dies
ermöglicht die Beschreibung wechselnder Regime als geordnete Folge durch
spezifische Eingangstrajektorien. Es wird ein Prinzip vorgestellt, um
komplexe Phänomene durch Prozesse verschiedener Zeitskalen darzustellen.
Da aufgrund rhythmischer Stimuli und der intrinsischen Rhythmen von
Neuronenverbänden die Eingangsgrößen häufig periodisch sind, wird das
Verhalten des NMM als Funktion der Intensität und Frequenz einer
periodischen Stimulation mittels der zugehörigen Lyapunov-Spektren und der
Zeitreihen charakterisiert. Auf der Basis der größten Lyapunov-Exponenten
wird das NMM mit dem Photic-Driving-Experiment überein gebracht. Dieses
Experiment findet routinemäßige Anwendung in der Diagnostik verschiedener
Erkrankungen wie Epilepsie, Migräne, Schizophrenie und Depression. Durch
die Anwendung des vorgestellten NMM wird der für die Diagnostik
entscheidende Mitnahmeeffekt reproduziert und es werden Vorhersagen für
eine Verbesserung der Indikation getroffen
- …