187,802 research outputs found
Reverse Doppler effect in backward spin waves scattered on acoustic waves
We report on the observation of reverse Doppler effect in backward spin waves
reflected off of surface acoustic waves. The spin waves are excited in a
yttrium iron garnet (YIG) film. Simultaneously, acoustic waves are also
generated. The strain induced by the acoustic waves in the magnetostrictive YIG
film results in the periodic modulation of the magnetic anisotropy in the film.
Thus, in effect, a travelling Bragg grating for the spin waves is produced. The
backward spin waves reflecting off of this grating exhibit a reverse Doppler
shift: shifting down rather than up in frequency when reflecting off of an
approaching acoustic wave. Similarly, the spin waves are shifted up in
frequency when reflecting from receding acoustic waves.Comment: 4 pages, 3 figure
3D numerical simulation of hydro-acoustic waves registered during the 2012 negros-cebu earthquake
The paper investigates on the hydro-acoustic waves propagation caused by the underwater earthquake, occurred on 6 February 2012, between the Negros and Cebu islands, in the Philippines. Hydro-acoustic waves are pressure waves that propagate at the sound celerity in water. These waves can be triggered by the sudden vertical sea-bed movement, due to underwater earthquakes. The results of three dimensional numerical simulations, which solve the wave equation in a weakly compressible sea water domain are presented. The hydro-acoustic signal is compared to an underwater acoustic signal recorded during the event by a scuba diver, who was about 12 km far from the earthquake epicenter
Numerical simulations of conversion to Alfven waves in sunspots
We study the conversion of fast magneto-acoustic waves to Alfven waves by
means of 2.5D numerical simulations in a sunspot-like magnetic configuration. A
fast, essentially acoustic, wave of a given frequency and wave number is
generated below the surface and propagates upward though the Alfven/acoustic
equipartition layer where it splits into upgoing slow (acoustic) and fast
(magnetic) waves. The fast wave quickly reflects off the steep Alfven speed
gradient, but around and above this reflection height it partially converts to
Alfven waves, depending on the local relative inclinations of the background
magnetic field and the wavevector. To measure the efficiency of this conversion
to Alfven waves we calculate acoustic and magnetic energy fluxes. The
particular amplitude and phase relations between the magnetic field and
velocity oscillations help us to demonstrate that the waves produced are indeed
Alfven waves. We find that the conversion to Alfven waves is particularly
important for strongly inclined fields like those existing in sunspot
penumbrae. Equally important is the magnetic field orientation with respect to
the vertical plane of wave propagation, which we refer to as "field azimuth".
For field azimuth less than 90 degrees the generated Alfven waves continue
upwards, but above 90 degrees downgoing Alfven waves are preferentially
produced. This yields negative Alfven energy flux for azimuths between 90 and
180 degrees. Alfven energy fluxes may be comparable to or exceed acoustic
fluxes, depending upon geometry, though computational exigencies limit their
magnitude in our simulations.Comment: Accepted for publication in Ap
Acousto-optic and opto-acoustic modulation in piezo-optomechanical circuits
Acoustic wave devices provide a promising chip-scale platform for efficiently
coupling radio frequency (RF) and optical fields. Here, we use an integrated
piezo-optomechanical circuit platform that exploits both the piezoelectric and
photoelastic coupling mechanisms to link 2.4 GHz RF waves to 194 THz (1550 nm)
optical waves, through coupling to propagating and localized 2.4 GHz acoustic
waves. We demonstrate acousto-optic modulation, resonant in both the optical
and mechanical domains, in which waveforms encoded on the RF carrier are mapped
to the optical field. We also show opto-acoustic modulation, in which the
application of optical pulses gates the transmission of propagating acoustic
waves. The time-domain characteristics of this system under both pulsed RF and
pulsed optical excitation are considered in the context of the different
physical pathways involved in driving the acoustic waves, and modeled through
the coupled mode equations of cavity optomechanics.Comment: 8 pages, 6 figure
Dust-acoustic waves and stability in the permeating dusty plasma: II. Power-law distributions
The dust-acoustic waves and their stability driven by a flowing dusty plasma
when it cross through a static (target) dusty plasma (the so-called permeating
dusty plasma) are investigated when the components of the dusty plasma obey the
power-law q-distributions in nonextensive statistics. The frequency, the growth
rate and the stability condition of the dust-acoustic waves are derived under
this physical situation, which express the effects of the nonextensivity as
well as the flowing dusty plasma velocity on the dust-acoustic waves in this
dusty plasma. The numerical results illustrate some new characteristics of the
dust-acoustic waves, which are different from those in the permeating dusty
plasma when the plasma components are the Maxwellian distribution. In addition,
we show that the flowing dusty plasma velocity has a significant effect on the
dust-acoustic waves in the permeating dusty plasma with the power-law
q-distribution.Comment: 20 pages, 10 figures, 41 reference
Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide
We demonstrate the ability to guide high-frequency photoacoustic waves
through thick tissue with a water-filled silica-capillary (150 \mu m inner
diameter and 30 mm long). An optical-resolution photoacoustic image of a 30 \mu
m diameter absorbing nylon thread was obtained by guiding the acoustic waves in
the capillary through a 3 cm thick fat layer. The transmission loss through the
capillary was about -20 dB, much lower than the -120 dB acoustic attenuation
through the fat layer. The overwhelming acoustic attenuation of high-frequency
acoustic waves by biological tissue can therefore be avoided by the use of a
small footprint capillary acoustic waveguide for remote detection. We finally
demonstrate that the capillary can be used as a dual optical-in acoustic-out
waveguide, paving the way for the development of minimally invasive
optical-resolution photoacoustic endoscopes free of any acoustic or optical
elements at their imaging tip
Boundary-layer receptivity for a parabolic leading edge
The effect of the nose radius of a body on boundary-layer receptivity is analysed for the case of a symmetric mean flow past a body with a parabolic leading edge. Asymptotic methods based on large Reynolds number are used, supplemented by numerical results. The Mach number is assumed small, and acoustic free-stream disturbances are considered. The case of free-stream acoustic waves, propagating obliquely to the symmetric mean flow is considered. The body nose radius, rn, enters the theory through a Strouhal number, S = ?rn/U, where ? is the frequency of the acoustic wave and U is the mean flow speed. The finite nose radius dramatically reduces the receptivity level compared to that for a flat plate, the amplitude of the instability waves in the boundary layer being decreased by an order of magnitude when S = 0.3. Oblique acoustic waves produce much higher receptivity levels than acoustic waves propagating parallel to the body chord
- …