280 research outputs found
Accelerated post-AGB evolution, initial-final mass relations, and the star-formation history of the Galactic bulge
We study the star-formation history of the Galactic bulge, as derived from
the age distribution of the central stars of planetary nebulae that belong to
this stellar population. The high resolution imaging and spectroscopic
observations of 31 compact planetary nebulae are used to derive their central
star masses. The Bloecker tracks with the cluster IFMR result in ages, which
are unexpectedly young. We find that the Bloecker post-AGB tracks need to be
accelerated by a factor of three to fit the local white dwarf masses. This
acceleration extends the age distribution. We adjust the IFMR as a free
parameter to map the central star ages on the full age range of bulge stellar
populations. This fit requires a steeper IFMR than the cluster relation. We
find a star-formation rate in the Galactic bulge, which is approximately
constant between 3 and 10 Gyr ago. The result indicates that planetary nebulae
are mainly associated with the younger and more metal-rich bulge populations.
The constant rate of star-formation between 3 and 10 Gyr agrees with
suggestions that the metal-rich component of the bulge is formed during an
extended process, such as a bar interaction.Comment: accepted for publication in A&
The history of the Galactic bulge
Planetary nebulae form in stellar populations with ages from 1 to 10 Gyr, and can be used to trace their star formation histories. Here we apply this to the Galactic bulge, where there are indications both for an old origin and for younger stars. We use new stellar models, which have significant different evolutionary speeds during the post-AGB phase. We apply these new models to a sample of 32 planetary nebulae with HST imaging and VLT spectroscopy. The results show evidence for an old starburst, followed by continuous star formation until at least 2Gyr ago. This agrees very well with recent analysis of colour-magnitude diagrams of the bulge. We show that the new models can also explain the [OIII] luminosity functions, and predict the uniform luminosity cut-off both in spiral galaxies and old elliptical galaxies.Facultad de Ciencias Astronómicas y Geofísica
The history of the Galactic bulge
Planetary nebulae form in stellar populations with ages from 1 to 10 Gyr, and can be used to trace their star formation histories. Here we apply this to the Galactic bulge, where there are indications both for an old origin and for younger stars. We use new stellar models, which have significant different evolutionary speeds during the post-AGB phase. We apply these new models to a sample of 32 planetary nebulae with HST imaging and VLT spectroscopy. The results show evidence for an old starburst, followed by continuous star formation until at least 2Gyr ago. This agrees very well with recent analysis of colour-magnitude diagrams of the bulge. We show that the new models can also explain the [OIII] luminosity functions, and predict the uniform luminosity cut-off both in spiral galaxies and old elliptical galaxies.Facultad de Ciencias Astronómicas y Geofísica
The history of the Galactic bulge
Planetary nebulae form in stellar populations with ages from 1 to 10 Gyr, and can be used to trace their star formation histories. Here we apply this to the Galactic bulge, where there are indications both for an old origin and for younger stars. We use new stellar models, which have significant different evolutionary speeds during the post-AGB phase. We apply these new models to a sample of 32 planetary nebulae with HST imaging and VLT spectroscopy. The results show evidence for an old starburst, followed by continuous star formation until at least 2Gyr ago. This agrees very well with recent analysis of colour-magnitude diagrams of the bulge. We show that the new models can also explain the [OIII] luminosity functions, and predict the uniform luminosity cut-off both in spiral galaxies and old elliptical galaxies.Facultad de Ciencias Astronómicas y Geofísica
Understanding AGB evolution in Galactic bulge stars from high-resolution infrared spectroscopy
An analysis of high-resolution near-infrared spectra of a sample of 45
asymptotic giant branch (AGB) stars towards the Galactic bulge is presented.
The sample consists of two subsamples, a larger one in the inner and
intermediate bulge, and a smaller one in the outer bulge. The data are analysed
with the help of hydrostatic model atmospheres and spectral synthesis. We
derive the radial velocity of all stars, and the atmospheric chemical mix
([Fe/H], C/O, C/C, Al, Si, Ti, and Y) where possible. Our ability
to model the spectra is mainly limited by the (in)completeness of atomic and
molecular line lists, at least for temperatures down to K. We find that the subsample in the inner and intermediate
bulge is quite homogeneous, with a slightly sub-solar mean metallicity and only
few stars with super-solar metallicity, in agreement with previous studies of
non-variable M-type giants in the bulge. All sample stars are oxygen-rich,
C/O1.0. The C/O and carbon isotopic ratios suggest that third dredge-up
(3DUP) is absent among the sample stars, except for two stars in the outer
bulge that are known to contain technetium. These stars are also more
metal-poor than the stars in the intermediate or inner bulge. Current stellar
masses are determined from linear pulsation models. The masses, metallicities
and 3DUP behaviour are compared to AGB evolutionary models. We conclude that
these models are partly in conflict with our observations. Furthermore, we
conclude that the stars in the inner and intermediate bulge belong to a more
metal-rich population that follows bar-like kinematics, whereas the stars in
the outer bulge belong to the metal-poor, spheroidal bulge population.Comment: 21 pages, 13 figures, 6 tables (incl. appendix), years of work,
published in MNRA
New models for the evolution of Post-Asymptotic Giant Branch stars and Central Stars of Planetary Nebulae
The Post Asymptotic Giant Branch (AGB) phase is arguably one of the least
understood phases of the evolution of low- and intermediate- mass stars. The
two grids of models presently available are based on outdated micro- and
macro-physics and do not agree with each other. We study the timescales of
post-AGB and CSPNe in the context of our present understanding of the micro-
and macro-physics of stars. We want to assess whether new post-AGB models,
based on the latter improvements in TP-AGB modeling, can help to understand the
discrepancies between observation and theory and within theory itself. We
compute a grid of post-AGB full evolutionary sequences that include all
previous evolutionary stages from the Zero Age Main Sequence to the White Dwarf
phase. Models are computed for initial masses between 0.8 and 4 and
for a wide range of initial metallicities (0.02, 0.01, 0.001, 0.0001),
this allow us to provide post-AGB timescales and properties for H-burning
post-AGB objects with masses in the relevant range for the formation of
planetary nebulae ( 0.5 - 0.8, ).
We find post-AGB timescales that are at least to times
shorter than those of old post-AGB stellar evolution models. This is true for
the whole mass and metallicity range. The new models are also 0.1 - 0.3
dex brighter than the previous models with similar remnant masses. Post-AGB
timescales show only a mild dependence on metallicity. The shorter post-AGB
timescales derived in the present work are in agreement with recent
semiempirical determinations of the post-AGB timescales from the CSPNe in the
Galactic Bulge. Due to the very different post-AGB crossing times,
initial-final mass relation and luminosities of the present models, they will
have a significant impact in the predictions for the formation of planetary
nebulae and the planetary nebulae luminosity function.Comment: Main Article: 16 pages, 12 figures and 3 tables. Main Article +
Appendices: 22 Pages, 16 figures and 6 tables. Accepted for publication in
A&A. (Revised to match the final version accepted for publication in A&A
Exploring the NRO Opportunity for a Hubble-sized Wide-field Near-IR Space Telescope -- NEW WFIRST
We discuss scientific, technical and programmatic issues related to the use
of an NRO 2.4m telescope for the WFIRST initiative of the 2010 Decadal Survey.
We show that this implementation of WFIRST, which we call "NEW WFIRST," would
achieve the goals of the NWNH Decadal Survey for the WFIRST core programs of
Dark Energy and Microlensing Planet Finding, with the crucial benefit of deeper
and/or wider near-IR surveys for GO science and a potentially Hubble-like Guest
Observer program. NEW WFIRST could also include a coronagraphic imager for
direct detection of dust disks and planets around neighboring stars, a
high-priority science and technology precursor for future ambitious programs to
image Earth-like planets around neighboring stars.Comment: 76 pages, 26 figures -- associated with the Princeton "New Telescope
Meeting
Chemical abundances of planetary nebulae in the substructures of M31 : II. The extended sample and a comparison study with the Outer-disk Group
We report deep spectroscopy of 10 planetary nebulae (PNe) in the Andromeda Galaxy (M31) using the 10.4 m Gran Telescopio Canarias (GTC). Our targets reside in different regions of M31, including halo streams and the dwarf satellite M32, and kinematically deviate from the extended disk. The temperature-sensitive [O III] λ4363 line is observed in all PNe. For four PNe, the GTC spectra extend beyond 1 μm, enabling the explicit detection of the [S III] λ6312 and λλ9069, 9531 lines and thus determination of the [S III] temperature. Abundance ratios are derived and generally consistent with AGB model predictions. Our PNe probably all evolved from low-mass (<2 M⊙) stars, as analyzed with the most up-to-date post-AGB evolutionary models, and their main-sequence ages are mostly ∼2-5 Gyr. Compared to the underlying, smooth, metal-poor halo of M31, our targets are uniformly metal rich ([O/H] ≳ -0.4), and seem to resemble the younger population in the stream. We thus speculate that our halo PNe formed in the Giant Stream's progenitor through extended star formation. Alternatively, they might have formed from the same metal-rich gas as did the outer-disk PNe but were displaced into their present locations as a result of galactic interactions. These interpretations are, although speculative, qualitatively in line with the current picture, as inferred from previous wide-field photometric surveys, that M31's halo is the result of complex interactions and merger processes. The behavior of the N/O of the combined sample of the outer-disk and our halo/substructure PNe signifies that hot bottom burning might actually occur at <3 M⊙ but careful assessment is needed.Instituto de Astrofísica de La PlataFacultad de Ciencias Astronómicas y Geofísica
- …