39,716 research outputs found
Machine learning and its applications in reliability analysis systems
In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA
The Morphospace of Consciousness
We construct a complexity-based morphospace to study systems-level properties
of conscious & intelligent systems. The axes of this space label 3 complexity
types: autonomous, cognitive & social. Given recent proposals to synthesize
consciousness, a generic complexity-based conceptualization provides a useful
framework for identifying defining features of conscious & synthetic systems.
Based on current clinical scales of consciousness that measure cognitive
awareness and wakefulness, we take a perspective on how contemporary
artificially intelligent machines & synthetically engineered life forms measure
on these scales. It turns out that awareness & wakefulness can be associated to
computational & autonomous complexity respectively. Subsequently, building on
insights from cognitive robotics, we examine the function that consciousness
serves, & argue the role of consciousness as an evolutionary game-theoretic
strategy. This makes the case for a third type of complexity for describing
consciousness: social complexity. Having identified these complexity types,
allows for a representation of both, biological & synthetic systems in a common
morphospace. A consequence of this classification is a taxonomy of possible
conscious machines. We identify four types of consciousness, based on
embodiment: (i) biological consciousness, (ii) synthetic consciousness, (iii)
group consciousness (resulting from group interactions), & (iv) simulated
consciousness (embodied by virtual agents within a simulated reality). This
taxonomy helps in the investigation of comparative signatures of consciousness
across domains, in order to highlight design principles necessary to engineer
conscious machines. This is particularly relevant in the light of recent
developments at the crossroads of cognitive neuroscience, biomedical
engineering, artificial intelligence & biomimetics.Comment: 23 pages, 3 figure
Cognitive apprenticeship : teaching the craft of reading, writing, and mathtematics
Includes bibliographical references (p. 25-27)This research was supported by the National Institute of Education under Contract no. US-NIE-C-400-81-0030 and the Office of Naval Research under Contract No. N00014-85-C-002
Deep Learning in Cardiology
The medical field is creating large amount of data that physicians are unable
to decipher and use efficiently. Moreover, rule-based expert systems are
inefficient in solving complicated medical tasks or for creating insights using
big data. Deep learning has emerged as a more accurate and effective technology
in a wide range of medical problems such as diagnosis, prediction and
intervention. Deep learning is a representation learning method that consists
of layers that transform the data non-linearly, thus, revealing hierarchical
relationships and structures. In this review we survey deep learning
application papers that use structured data, signal and imaging modalities from
cardiology. We discuss the advantages and limitations of applying deep learning
in cardiology that also apply in medicine in general, while proposing certain
directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table
- …