26,818 research outputs found

    Is Paromomycin an Effective and Safe Treatment against Cutaneous Leishmaniasis? A Meta-Analysis of 14 Randomized Controlled Trials

    Get PDF
    Millions of people worldwide are suffering from cutaneous leishmaniasis that is caused by parasites of the genus Leishmania. Although pentavalent antimony compounds are the treatment of choice, their use is limited by high cost, poor compliance, and systemic toxicity. Paromomycin was developed to overcome such limitations. However, there is no consensus on its efficacy. This meta-analysis assessed the efficacy and safety of paromomycin compared with placebo and pentavalent antimony compounds. Fourteen randomized controlled trials, including 1,221 patients, met our selection criteria. Topical paromomycin appeared to have therapeutic activity against the old world and new world cutaneous leishmaniasis, with increased local reactions, when combined with methylbenzethonium chloride. Topical paromomycin was not significantly different from intralesional pentavalent antimony compounds in treating the old world form, whereas it was inferior to parenteral pentavalent antimony compounds in treating the new world form. However, a similar efficacy was found between parenteral paromomycin and pentavalent antimony compounds in treating the new world form. Fewer systemic side effects were observed with topical and parenteral paromomycin than pentavalent antimony compounds. These results suggest that topical paromomycin with methylbenzethonium chloride could be a therapeutic alternative to pentavalent antimony compounds for selected cases of the old world cutaneous leishmaniasis

    Localized vibration modes of defect pairs in silicon

    Get PDF
    Absorption bands and localized vibrational modes of silicon doped with boron compounds containing phosphorus, arsenic, antimony, or lithiu

    The co-pyrolysis of flame retarded high impact polystyrene and polyolefins

    Get PDF
    The co-pyrolysis of brominated high impact polystyrene (Br-HIPS) with polyolefins using a fixed bed reactor has been investigated, in particular, the effect that different types brominated aryl compounds and antimony trioxide have on the pyrolysis products. The pyrolysis products were analysed using FT-IR, GC-FID, GC-MS, and GC-ECD. Liquid chromatography was used to separate the oils/waxes so that a more detailed analysis of the aliphatic, aromatic, and polar fractions could be carried out. It was found that interaction occurs between Br-HIPS and polyolefins during co-pyrolysis and that the presence of antimony trioxide influences the pyrolysis mass balance. Analysis of the Br-HIPS + polyolefin co-pyrolysis products showed that the presence of polyolefins led to an increase in the concentration of alkyl and vinyl mono-substituted benzene rings in the pyrolysis oil/wax resulting from Br-HIPS pyrolysis. The presence of Br-HIPS also had an impact on the oil/wax products of polyolefin pyrolysis, particularly on the polyethylene oil/wax composition which converted from being a mixture of 1-alkenes and n-alkanes to mostly n-alkanes. Antimony trioxide had very little impact on the polyolefin wax/oil composition but it did suppress the formation of styrene and alpha-methyl styrene and increase the formation of ethylbenzene and cumene during the pyrolysis of the Br-HIPS

    Pyrolysis of brominated feedstock plastic in a fluidised bed reactor

    Get PDF
    Fire retarded high impact polystyrene has been pyrolysed using a fluidised bed reactor with a sand bed. The yield and composition of the products have been investigated in relation to fluidised bed temperature. The bromine distribution between the products and a detailed analysis of the oils using GC-FID/ECD, GC-MS, FT-ir, and size exclusion chromatography has been carried out. It was found that the majority of the bromine transfers to the pyrolysis oil and the antimony was detected in both the oil and the char. Oil made up over 89.9% of the pyrolysis products. Over 30% of the oil consisted of benzene, toluene, ethylbenzene, styrene and cumene. The pyrolysis gases were mainly hydrocarbons in the C1-C4 range but some HBr and Br2 was detected

    Review of trace toxic elements (Pb, Cd, Hg, As, Sb, Bi, Se, Te) and their deportment in gold processing. Part 1: Mineralogy, aqueous chemistry and toxicity

    Get PDF
    A literature review on the deportment of trace toxic elements (Pb, Cd, Hg, As, Sb, Bi, Se, and Te) in gold processing by cyanidation is presented which compiles the current knowledge in this area and highlights the gaps. This review, together with further research on the gaps in the thermodynamics and kinetics of these systems, aims to support the development of computer models to predict the chemical speciation and deportment of these elements through the various stages of the gold cyanidation process. The first part of this review is a collation of the relevant information on trace element mineralogy, aqueous chemistry and toxicity, together with a comparison of two available software packages (JESS and OLI) for thermodynamic modelling. Chemical speciation modelling can assist in understanding the chemistry of the trace toxic elements in gold cyanidation solutions which remains largely unexplored. Many significant differences exist between the predicted speciation of these trace elements for different types of modelling software due to differences in the thermodynamic data used, the paucity of data that exists under appropriate non-ideal conditions, and the methods used by the software packages to estimate thermodynamic parameters under these conditions. The toxicity and environmental guidelines of the chosen trace element species that exist in aqueous solutions are discussed to better understand the health and environmental risks associated with the presence of these elements in gold ores

    Contribution to the understanding of tribological properties of graphite intercalation compounds with metal chloride

    Get PDF
    Intrinsic tribological properties of lamellar compounds are usually attributed to the presence of van der Waals gaps in their structure through which interlayer interactions are weak. The controlled variation of the distances and interactions between graphene layers by intercalation of electrophilic species in graphite is used in order to explore more deeply the friction reduction properties of low-dimensional compounds. Three graphite intercalation compounds with antimony pentachloride, iron trichloride and aluminium trichloride are studied. Their tribological properties are correlated to their structural parameters, and the interlayer interactions are deduced from ab initio bands structure calculations

    Production of pure metals

    Get PDF
    A process for depositing elements by irradiating liquids is reported. Ultra pure elements are precipitated from aqueous solutions or suspensions of compounds. A solution of a salt of a metal to be prepared is irradiated, and the insoluble reaction product settles out. Some chemical compounds may also be prepared in this manner

    Observation of a topologically non-trivial surface state in half-Heusler PtLuSb (001) thin films.

    Get PDF
    The discovery of topological insulators, materials with bulk band gaps and protected cross-gap surface states in compounds such as Bi2Se3, has generated much interest in identifying topological surface states (TSSs) in other classes of materials. In particular, recent theoretical calculations suggest that TSSs may be found in half-Heusler ternary compounds. If experimentally realizable, this would provide a materials platform for entirely new heterostructure spintronic devices that make use of the structurally identical but electronically varied nature of Heusler compounds. Here we show the presence of a TSS in epitaxially grown thin films of the half-Heusler compound PtLuSb. Spin- and angle-resolved photoemission spectroscopy, complemented by theoretical calculations, reveals a surface state with linear dispersion and a helical tangential spin texture consistent with previous predictions. This experimental verification of topological behaviour is a significant step forward in establishing half-Heusler compounds as a viable material system for future spintronic devices

    Removal of organobromine compounds from the pyrolysis oils of flame retarded plastics using zeolite catalysts

    Get PDF
    Two flame retarded plastics have been pyrolysed in the presence of two Zeolite catalysts to remove the organobromine compounds from the derived pyrolysis oil. The flame retarded plastics were, acrylonitrile – butadiene – styrene (ABS) that was flame retarded with tetrabromobisphenol A and high-impact-polystyrene (HIPS) that was flame retarded with decabromodiphenyl ether. The two catalysts investigated were Zeolite ZSM-5 and Y-Zeolite. Pyrolysis was carried out in a fixed bed reactor at a final pyrolysis temperature of 440 ºC. The pyrolysis gases were passed immediately to a fixed bed of the catalyst bed. It was found that the presence of Zeolite catalysts increased the amount of gaseous hydrocarbons produced during pyrolysis but decreased the amount of pyrolysis oil produced. In addition, significant quantities of coke were formed on the surface of the catalysts during pyrolysis. The Zeolite catalysts were found to reduce the formation of some valuable pyrolysis products such as styrene and cumene, but other products such as naphthalene were formed instead. The Zeolite catalysts, especially Y-Zeolite, were found to be very effective at removing volatile organobromine compounds. However, they were less effective at removing antimony bromide from the volatile pyrolysis products, although some antimony bromide was found on the surfaces of the spent catalysts
    • …
    corecore