38,245 research outputs found

    Interlayer Exchange Coupling in (Ga,Mn)As-based Superlattices

    Full text link
    The interlayer coupling between (Ga,Mn)As ferromagnetic layers in all-semiconductor superlattices is studied theoretically within a tight-binding model, which takes into account the crystal, band and magnetic structure of the constituent superlattice components. It is shown that the mechanism originally introduced to describe the spin correlations in antiferromagnetic EuTe/PbTe superlattices, explains the experimental results observed in ferromagnetic semiconductor structures, i.e., both the antiferromagnetic coupling between ferromagnetic layers in IV-VI (EuS/PbS and EuS/YbSe) superlattices as well as the ferromagnetic interlayer coupling in III-V ((Ga,Mn)As/GaAs) multilayer structures. The model allows also to predict (Ga,Mn)As-based structures, in which an antiferromagnetic interlayer coupling could be expected.Comment: 4 pages, 3 figure

    Interlayer exchange coupling in (Ga,Mn)As based multilayers

    Full text link
    Exhibiting antiferromagnetic interlayer coupling in dilute magnetic semiconductor multilayers is essential for the realisation of magnetoresistances analogous to giant magnetoresistance in metallic multilayer structures. In this work we use a mean-field theory of carrier induced ferromagnetism to explore possible (Ga,Mn)As based multilayer structures that might yield antiferromagnetic coupling.Comment: 4 pages, 2 figures. To be published in physica status solidi c as the proceedings of the PASPS IV conferenc

    Symmetry and topology in antiferromagnetic spintronics

    Full text link
    Antiferromagnetic spintronics focuses on investigating and using antiferromagnets as active elements in spintronics structures. Last decade advances in relativistic spintronics led to the discovery of the staggered, current-induced field in antiferromagnets. The corresponding N\'{e}el spin-orbit torque allowed for efficient electrical switching of antiferromagnetic moments and, in combination with electrical readout, for the demonstration of experimental antiferromagnetic memory devices. In parallel, the anomalous Hall effect was predicted and subsequently observed in antiferromagnets. A new field of spintronics based on antiferromagnets has emerged. We will focus here on the introduction into the most significant discoveries which shaped the field together with a more recent spin-off focusing on combining antiferromagnetic spintronics with topological effects, such as antiferromagnetic topological semimetals and insulators, and the interplay of antiferromagnetism, topology, and superconductivity in heterostructures.Comment: Book chapte

    Biconical structures in two-dimensional anisotropic Heisenberg antiferromagnets

    Full text link
    Square lattice Heisenberg and XY antiferromagnets with uniaxial anisotropy in a field along the easy axis are studied. Based on ground state considerations and Monte Carlo simulations, the role of biconical structures in the transition region between the antiferromagnetic and spin--flop phases is analyzed. In particular, adding a single--ion anisotropy to the XXZ antiferromagnet, one observes, depending on the sign of that anisotropy, either an intervening biconical phase or a direct transition of first order separating the two phases. In case of the anisotropic XY model, the degeneracy of the ground state, at a critical field, in antiferromagnetic, spin--flop, and bidirectional structures seems to result, as in the case of the XXZ model, in a narrow disordered phase between the antiferromagnetic and spin--flop phases, dominated by bidirectional fluctuations.Comment: 4 pages, 5 figures, accepted by Phys. Rev.

    Interface-induced magnetism in perovskite quantum wells

    Full text link
    We investigate the angular dependence of the magnetoresistance of thin (< 1 nm), metallic SrTiO3 quantum wells epitaxially embedded in insulating, ferrimagnetic GdTiO3 and insulating, antiferromagnetic SmTiO3, respectively. The SrTiO3 quantum wells contain a high density of mobile electrons (~7x10^14 cm^-2). We show that the longitudinal and transverse magnetoresistance in the structures with GdTiO3 are consistent with anisotropic magnetoresistance, and thus indicative of induced ferromagnetism in the SrTiO3, rather than a nonequilibrium proximity effect. Comparison with the structures with antiferromagnetic SmTiO3 shows that the properties of thin SrTiO3 quantum wells can be tuned to obtain magnetic states that do not exist in the bulk material.Comment: Accepted for publication as a Rapid Communication in Physical Review
    • …
    corecore