25,384 research outputs found

    Abstract knowledge in the broken-string problem : evidence from nonhuman primates and pre-schoolers

    Get PDF
    There was funding from the Royal Commission for the Exhibition of 1851.There is still large controversy about whether abstract knowledge of physical problems is uniquely human. We presented 9 capuchin monkeys, 6 bonobos, 6 chimpanzees and 48 children with two versions of a broken-string problem. In the standard condition, participants had to choose between an intact and a broken string as means to a reward. In the critical condition, the functional parts of the strings were covered up and replaced by perceptually similar, but non-functional cues. Apes, monkeys and young children performed significantly better in the standard condition in which the cues played a functional role, indicating knowledge of the functional properties involved. Moreover, a control experiment with chimpanzees and young children ruled out that this difference in performance could be accounted for by differences of perceptual feedback in the two conditions. We suggest that, similar to humans, nonhuman primates partly rely on abstract concepts in physical problem-solving.Peer reviewe

    Particle identification

    Full text link
    Particle IDentification (PID) is fundamental to particle physics experiments. This paper reviews PID strategies and methods used by the large LHC experiments, which provide outstanding examples of the state-of-the-art. The first part focuses on the general design of these experiments with respect to PID and the technologies used. Three PID techniques are discussed in more detail: ionization measurements, time-of-flight measurements and Cherenkov imaging. Four examples of the implementation of these techniques at the LHC are given, together with selections of relevant examples from other experiments and short overviews on new developments. Finally, the Alpha Magnetic Spectrometer (AMS 02) experiment is briefly described as an impressive example of a space-based experiment using a number of familiar PID techniques.Comment: 61 pages, 30 figure

    AMS tracking in-orbit performance

    Full text link
    AMS-02 is a high precision magnetic spectrometer for cosmic rays in the GeV to TeV energy range. Its tracker consists of nine layers of double-sided silicon microstrip sensors. They are used to locate the trajectories of cosmic rays in the 0.14 T field of a cylindrical magnet, thus measuring their rigidity p/Zp/Z and charge sign. In addition, they deliver a high resolution measurement of the absolute charge ∣Z∣|Z|. The detector has been designed to operate in space with a position resolution of about 10 μ\mum for each hit and charge identification capabilities up to Z=26Z=26. In this talk I describe the performance in orbit of this detector component and its impact on the overall performance of the spectrometer.Comment: 24th International Workshop on Vertex Detectors, 1-5 June 2015, Santa Fe, New Mexico, US

    Towards a new generation axion helioscope

    Get PDF
    We study the feasibility of a new generation axion helioscope, the most ambitious and promising detector of solar axions to date. We show that large improvements in magnetic field volume, x-ray focusing optics and detector backgrounds are possible beyond those achieved in the CERN Axion Solar Telescope (CAST). For hadronic models, a sensitivity to the axion-photon coupling of \gagamma\gtrsim {\rm few} \times 10^{-12} GeV−1^{-1} is conceivable, 1--1.5 orders of magnitude beyond the CAST sensitivity. If axions also couple to electrons, the Sun produces a larger flux for the same value of the Peccei-Quinn scale, allowing one to probe a broader class of models. Except for the axion dark matter searches, this experiment will be the most sensitive axion search ever, reaching or surpassing the stringent bounds from SN1987A and possibly testing the axion interpretation of anomalous white-dwarf cooling that predicts mam_a of a few meV. Beyond axions, this new instrument will probe entirely unexplored ranges of parameters for a large variety of axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics.Comment: 37 pages, 11 figures, accepted for publication in JCA

    From vertex detectors to inner trackers with CMOS pixel sensors

    Full text link
    The use of CMOS Pixel Sensors (CPS) for high resolution and low material vertex detectors has been validated with the 2014 and 2015 physics runs of the STAR-PXL detector at RHIC/BNL. This opens the door to the use of CPS for inner tracking devices, with 10-100 times larger sensitive area, which require therefore a sensor design privileging power saving, response uniformity and robustness. The 350 nm CMOS technology used for the STAR-PXL sensors was considered as too poorly suited to upcoming applications like the upgraded ALICE Inner Tracking System (ITS), which requires sensors with one order of magnitude improvement on readout speed and improved radiation tolerance. This triggered the exploration of a deeper sub-micron CMOS technology, Tower-Jazz 180 nm, for the design of a CPS well adapted for the new ALICE-ITS running conditions. This paper reports the R&D results for the conception of a CPS well adapted for the ALICE-ITS.Comment: 4 pages, 4 figures, VCI 2016 conference proceeding
    • …
    corecore