21,733 research outputs found
The Murchison Widefield Array
It is shown that the excellent Murchison Radio-astronomy Observatory site
allows the Murchison Widefield Array to employ a simple RFI blanking scheme and
still calibrate visibilities and form images in the FM radio band. The
techniques described are running autonomously in our calibration and imaging
software, which is currently being used to process an FM-band survey of the
entire southern sky.Comment: Accepted for publication in Proceedings of Science [PoS(RFI2010)016].
6 pages and 3 figures. Presented at RFI2010, the Third Workshop on RFI
Mitigation in Radio Astronomy, 29-31 March 2010, Groningen, The Netherland
Adaptive Real Time Imaging Synthesis Telescopes
The digital revolution is transforming astronomy from a data-starved to a
data-submerged science. Instruments such as the Atacama Large Millimeter Array
(ALMA), the Large Synoptic Survey Telescope (LSST), and the Square Kilometer
Array (SKA) will measure their accumulated data in petabytes. The capacity to
produce enormous volumes of data must be matched with the computing power to
process that data and produce meaningful results. In addition to handling huge
data rates, we need adaptive calibration and beamforming to handle atmospheric
fluctuations and radio frequency interference, and to provide a user
environment which makes the full power of large telescope arrays accessible to
both expert and non-expert users. Delayed calibration and analysis limit the
science which can be done. To make the best use of both telescope and human
resources we must reduce the burden of data reduction.
Our instrumentation comprises of a flexible correlator, beam former and
imager with digital signal processing closely coupled with a computing cluster.
This instrumentation will be highly accessible to scientists, engineers, and
students for research and development of real-time processing algorithms, and
will tap into the pool of talented and innovative students and visiting
scientists from engineering, computing, and astronomy backgrounds.
Adaptive real-time imaging will transform radio astronomy by providing
real-time feedback to observers. Calibration of the data is made in close to
real time using a model of the sky brightness distribution. The derived
calibration parameters are fed back into the imagers and beam formers. The
regions imaged are used to update and improve the a-priori model, which becomes
the final calibrated image by the time the observations are complete
Hydrogen Epoch of Reionization Array (HERA)
The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to
measure 21 cm emission from the primordial intergalactic medium (IGM)
throughout cosmic reionization (), and to explore earlier epochs of our
Cosmic Dawn (). During these epochs, early stars and black holes
heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is
designed to characterize the evolution of the 21 cm power spectrum to constrain
the timing and morphology of reionization, the properties of the first
galaxies, the evolution of large-scale structure, and the early sources of
heating. The full HERA instrument will be a 350-element interferometer in South
Africa consisting of 14-m parabolic dishes observing from 50 to 250 MHz.
Currently, 19 dishes have been deployed on site and the next 18 are under
construction. HERA has been designated as an SKA Precursor instrument.
In this paper, we summarize HERA's scientific context and provide forecasts
for its key science results. After reviewing the current state of the art in
foreground mitigation, we use the delay-spectrum technique to motivate
high-level performance requirements for the HERA instrument. Next, we present
the HERA instrument design, along with the subsystem specifications that ensure
that HERA meets its performance requirements. Finally, we summarize the
schedule and status of the project. We conclude by suggesting that, given the
realities of foreground contamination, current-generation 21 cm instruments are
approaching their sensitivity limits. HERA is designed to bring both the
sensitivity and the precision to deliver its primary science on the basis of
proven foreground filtering techniques, while developing new subtraction
techniques to unlock new capabilities. The result will be a major step toward
realizing the widely recognized scientific potential of 21 cm cosmology.Comment: 26 pages, 24 figures, 2 table
Confocal Ellipsoidal Reflector System for a Mechanically Scanned Active Terahertz Imager
We present the design of a reflector system that can rapidly scan and refocus a terahertz beam for high-resolution standoff imaging applications. The proposed optical system utilizes a confocal Gregorian geometry with a small mechanical rotating mirror and an axial displacement of the feed. For operation at submillimeter wavelengths and standoff ranges of many meters, the imaging targets are electrically very close to the antenna aperture. Therefore the main reflector surface must be an ellipse, instead of a parabola, in order to achieve the best imaging performance. Here we demonstrate how a simple design equivalence can be used to generalize the design of a Gregorian reflector system based on a paraboloidal main reflector to one with an ellipsoidal main reflector. The system parameters are determined by minimizing the optical path length error, and the results are validated with numerical simulations from the commercial antenna software package GRASP. The system is able to scan the beam over 0.5 m in cross-range at a 25 m standoff range with less than 1% increase of the half-power beam-width
Direction-Dependent Polarised Primary Beams in Wide-Field Synthesis Imaging
The process of wide-field synthesis imaging is explored, with the aim of
understanding the implications of variable, polarised primary beams for
forthcoming Epoch of Reionisation experiments. These experiments seek to detect
weak signatures from redshifted 21cm emission in deep residual datasets, after
suppression and subtraction of foreground emission. Many subtraction algorithms
benefit from low side-lobes and polarisation leakage at the outset, and both of
these are intimately linked to how the polarised primary beams are handled.
Building on previous contributions from a number of authors, in which
direction-dependent corrections are incorporated into visibility gridding
kernels, we consider the special characteristics of arrays of fixed dipole
antennas operating around 100-200 MHz, looking towards instruments such as the
Square Kilometre Array (SKA) and the Hydrogen Epoch of Reionization Arrays
(HERA). We show that integrating snapshots in the image domain can help to
produce compact gridding kernels, and also reduce the need to make complicated
polarised leakage corrections during gridding. We also investigate an
alternative form for the gridding kernel that can suppress variations in the
direction-dependent weighting of gridded visibilities by 10s of dB, while
maintaining compact support.Comment: 15 pages, 4 figures. Accepted for publication in JA
Penetrating 3-D Imaging at 4- and 25-m Range Using a Submillimeter-Wave Radar
We show experimentally that a high-resolution imaging radar operating at 576–605 GHz is capable of detecting weapons concealed by clothing at standoff ranges of 4–25 m. We also demonstrate the critical advantage of 3-D image reconstruction for visualizing hidden objects using active-illumination coherent terahertz imaging. The present system can image a torso with <1 cm resolution at 4 m standoff in about five minutes. Greater standoff distances and much higher frame rates should be achievable by capitalizing on the bandwidth, output power, and compactness of solid state Schottky-diode based terahertz mixers and multiplied sources
Fundamental issues in antenna design for microwave medical imaging applications
This paper surveys the development of microwave medical imaging and the fundamental challenges associated with microwave antennas design for medical imaging applications. Different microwave antennas used in medical imaging applications such as monopoles, bow-tie, vivaldi and pyramidal horn antennas are discussed. The challenges faced when the latter used in medical imaging environment are detailed. The paper provides the possible solutions for the challenges at hand and also provides insight into the modelling work which will help the microwave engineering community to understand the behaviour of the microwave antennas in coupling media
Nanoantennas for visible and infrared radiation
Nanoantennas for visible and infrared radiation can strongly enhance the
interaction of light with nanoscale matter by their ability to efficiently link
propagating and spatially localized optical fields. This ability unlocks an
enormous potential for applications ranging from nanoscale optical microscopy
and spectroscopy over solar energy conversion, integrated optical
nanocircuitry, opto-electronics and density-ofstates engineering to
ultra-sensing as well as enhancement of optical nonlinearities. Here we review
the current understanding of optical antennas based on the background of both
well-developed radiowave antenna engineering and the emerging field of
plasmonics. In particular, we address the plasmonic behavior that emerges due
to the very high optical frequencies involved and the limitations in the choice
of antenna materials and geometrical parameters imposed by nanofabrication.
Finally, we give a brief account of the current status of the field and the
major established and emerging lines of investigation in this vivid area of
research.Comment: Review article with 76 pages, 21 figure
The Murchison Widefield Array: Design Overview
The Murchison Widefield Array (MWA) is a dipole-based aperture array
synthesis telescope designed to operate in the 80-300 MHz frequency range. It
is capable of a wide range of science investigations, but is initially focused
on three key science projects. These are detection and characterization of
3-dimensional brightness temperature fluctuations in the 21cm line of neutral
hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10,
solar imaging and remote sensing of the inner heliosphere via propagation
effects on signals from distant background sources,and high-sensitivity
exploration of the variable radio sky. The array design features 8192
dual-polarization broad-band active dipoles, arranged into 512 tiles comprising
16 dipoles each. The tiles are quasi-randomly distributed over an aperture
1.5km in diameter, with a small number of outliers extending to 3km. All
tile-tile baselines are correlated in custom FPGA-based hardware, yielding a
Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point
spread function (PSF) quality. The correlated data are calibrated in real time
using novel position-dependent self-calibration algorithms. The array is
located in the Murchison region of outback Western Australia. This region is
characterized by extremely low population density and a superbly radio-quiet
environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings
of the IEE
First geodetic observations using new VLBI stations ASKAP-29 and WARK12M
We report the results of a successful 7 hour 1.4 GHz VLBI experiment using
two new stations, ASKAP-29 located in Western Australia and WARK12M located on
the North Island of New Zealand. This was the first geodetic VLBI observing
session with the participation of these new stations. We have determined the
positions of ASKAP-29 and WARK12M. Random errors on position estimates are
150-200 mm for the vertical component and 40-50 mm for the horizontal
component. Systematic errors caused by the unmodeled ionosphere path delay may
reach 1.3 m for the vertical component.Comment: 11 pages, 6 flgures, 4 table
- …