21 research outputs found
Enabling technologies for urban smart mobility: Recent trends, opportunities and challenges
The increasing population across the globe makes it essential to link smart and sustainable city planning with the logistics of transporting people and goods, which will significantly contribute to how societies will face mobility in the coming years. The concept of smart mobility emerged with the popularity of smart cities and is aligned with the sustainable development goals defined by the United Nations. A reduction in traffic congestion and new route optimizations with reduced ecological footprint are some of the essential factors of smart mobility; however, other aspects must also be taken into account, such as the promotion of active mobility and inclusive mobility, encour-aging the use of other types of environmentally friendly fuels and engagement with citizens. The Internet of Things (IoT), Artificial Intelligence (AI), Blockchain and Big Data technology will serve as the main entry points and fundamental pillars to promote the rise of new innovative solutions that will change the current paradigm for cities and their citizens. Mobilityâasâaâservice, traffic flow optimization, the optimization of logistics and autonomous vehicles are some of the services and applications that will encompass several changes in the coming years with the transition of existing cities into smart cities. This paper provides an extensive review of the current trends and solutions presented in the scope of smart mobility and enabling technologies that support it. An overview of how smart mobility fits into smart cities is provided by characterizing its main attributes and the key benefits of using smart mobility in a smart city ecosystem. Further, this paper highlights other various opportunities and challenges related to smart mobility. Lastly, the major services and applications that are expected to arise in the coming years within smart mobility are explored with the prospective future trends and scope
Attacks on self-driving cars and their countermeasures : a survey
Intelligent Traffic Systems (ITS) are currently evolving in the form of a cooperative ITS or connected vehicles. Both forms use the data communications between Vehicle-To-Vehicle (V2V), Vehicle-To-Infrastructure (V2I/I2V) and other on-road entities, and are accelerating the adoption of self-driving cars. The development of cyber-physical systems containing advanced sensors, sub-systems, and smart driving assistance applications over the past decade is equipping unmanned aerial and road vehicles with autonomous decision-making capabilities. The level of autonomy depends upon the make-up and degree of sensor sophistication and the vehicle's operational applications. As a result, self-driving cars are being compromised perceived as a serious threat. Therefore, analyzing the threats and attacks on self-driving cars and ITSs, and their corresponding countermeasures to reduce those threats and attacks are needed. For this reason, some survey papers compiling potential attacks on VANETs, ITSs and self-driving cars, and their detection mechanisms are available in the current literature. However, up to our knowledge, they have not covered the real attacks already happened in self-driving cars. To bridge this research gap, in this paper, we analyze the attacks that already targeted self-driving cars and extensively present potential cyber-Attacks and their impacts on those cars along with their vulnerabilities. For recently reported attacks, we describe the possible mitigation strategies taken by the manufacturers and governments. This survey includes recent works on how a self-driving car can ensure resilient operation even under ongoing cyber-Attack. We also provide further research directions to improve the security issues associated with self-driving cars. © 2013 IEEE
Trustworthy Federated Learning: A Survey
Federated Learning (FL) has emerged as a significant advancement in the field
of Artificial Intelligence (AI), enabling collaborative model training across
distributed devices while maintaining data privacy. As the importance of FL
increases, addressing trustworthiness issues in its various aspects becomes
crucial. In this survey, we provide an extensive overview of the current state
of Trustworthy FL, exploring existing solutions and well-defined pillars
relevant to Trustworthy . Despite the growth in literature on trustworthy
centralized Machine Learning (ML)/Deep Learning (DL), further efforts are
necessary to identify trustworthiness pillars and evaluation metrics specific
to FL models, as well as to develop solutions for computing trustworthiness
levels. We propose a taxonomy that encompasses three main pillars:
Interpretability, Fairness, and Security & Privacy. Each pillar represents a
dimension of trust, further broken down into different notions. Our survey
covers trustworthiness challenges at every level in FL settings. We present a
comprehensive architecture of Trustworthy FL, addressing the fundamental
principles underlying the concept, and offer an in-depth analysis of trust
assessment mechanisms. In conclusion, we identify key research challenges
related to every aspect of Trustworthy FL and suggest future research
directions. This comprehensive survey serves as a valuable resource for
researchers and practitioners working on the development and implementation of
Trustworthy FL systems, contributing to a more secure and reliable AI
landscape.Comment: 45 Pages, 8 Figures, 9 Table
Applications
Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications
Assessing the Environmental Performances of Urban Roundabouts Using the VSP Methodology and AIMSUN
In line with globally shared environmental sustainability goals, the shift towards citizen-friendly mobility is changing the way people move through cities and road user behaviour. Building a sustainable road transport requires design knowledge to develop increasingly green road infrastructures and monitoring the environmental impacts from mobile crowdsourced data. In this view, the paper presents an empirically based methodology that integrates the vehicle-specific power (VSP) model and microscopic traffic simulation (AIMSUN) to estimate second-by-second vehicle emissions at urban roundabouts. The distributions of time spent in each VSP mode from instantaneous vehicle trajectory data gathered in the field via smartphone were the starting point of the analysis. The versatility of AIMSUN in calibrating the model parameters to better reflect the field-observed speed-time trajectories and to enhance the estimation accuracy was assessed. The conversion of an existing roundabout within the sample into a turbo counterpart was also made as an attempt to confirm the reproducibility of the proposed procedure. The results shed light on new opportunities in the environmental performance evaluation of road units when changes in design or operation should be considered within traffic management strategies and highlighted the potential of the smart approach in collecting big amounts of data through digital communities
Applications
Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications
2nd Symposium on Management of Future motorway and urban Traffic Systems (MFTS 2018): Booklet of abstracts: Ispra, 11-12 June 2018
The Symposium focuses on future traffic management systems, covering the subjects of traffic control, estimation, and modelling of motorway and urban networks, with particular emphasis on the presence of advanced vehicle communication and automation technologies.
As connectivity and automation are being progressively introduced in our transport and mobility systems, there is indeed a growing need to understand the implications and opportunities for an enhanced traffic management as well as to identify innovative ways and tools to optimise traffic efficiency.
In particular the debate on centralised versus decentralised traffic management in the presence of connected and automated vehicles has started attracting the attention of the research community.
In this context, the Symposium provides a remarkable opportunity to share novel ideas and discuss future research directions.JRC.C.4-Sustainable Transpor
Intelligent Multi-Dimensional Resource Management in MEC-Assisted Vehicular Networks
Benefiting from advances in the automobile industry and wireless communication technologies, the vehicular network has been emerged as a key enabler of intelligent transportation services. Allowing real-time information exchanging between vehicle and everything, traffic safety and efficiency are significantly enhanced, and ubiquitous Internet access is enabled to support new data services and applications. However, with more and more services and applications, mobile data traffic generated by vehicles has been increasing and the issue on the overloaded computing task has been getting worse. Because of the limitation of spectrum and vehicles' on-board computing and caching resources, it is challenging to promote vehicular networking technologies to support the emerging services and applications, especially those requiring sensitive delay and diverse resources. To overcome these challenges, in this thesis, we propose a new vehicular network architecture and design efficient resource management schemes to support the emerging applications and services with different levels of quality-of-service (QoS) guarantee.
Firstly, we propose a multi-access edge computing (MEC)-assisted vehicular network (MVNET) architecture that integrates the concepts of software-defined networking (SDN) and network function virtualization (NFV). With MEC, the interworking of multiple wireless access technologies can be realized to exploit the diversity gain over a wide range of radio spectrum, and at the same time, vehicle's computing/caching tasks can be offloaded to and processed by the MEC servers. By enabling NFV in MEC, different functions can be programmed on the server to support diversified vehicular applications, thus enhancing the server's flexibility. Moreover, by using SDN concepts in MEC, a unified control plane interface and global information can be provided, and by subsequently using this information, intelligent traffic steering and efficient resource management can be achieved.
Secondly, under the proposed MVNET architecture, we propose a dynamic spectrum management framework to improve spectrum resource utilization while guaranteeing QoS requirements for different applications, in which, spectrum slicing, spectrum allocating, and transmit power controlling are jointly considered. Accordingly, three non-convex network utility maximization problems are formulated to slice spectrum among base stations (BSs), allocate spectrum among vehicles associated with the same BS, and control transmit powers of BSs, respectively. Via linear programming relaxation and first-order Taylor series approximation, these problems are transformed into tractable forms and then are jointly solved by a proposed alternate concave search algorithm. As a result, optimal spectrum slicing ratios among BSs, optimal BS-vehicle association patterns, optimal fractions of spectrum resources allocated to vehicles, and optimal transmit powers of BSs are obtained. Based on our simulation, a high aggregate network utility is achieved by the proposed spectrum management scheme compared with two existing schemes.
Thirdly, we study the joint allocation of the spectrum, computing, and caching resources in MVNETs. To support different vehicular applications, we consider two typical MVNET architectures and formulate multi-dimensional resource optimization problems accordingly, which are usually with high computation complexity and overlong problem-solving time. Thus, we exploit reinforcement learning to transform the two formulated problems and solve them by leveraging the deep deterministic policy gradient (DDPG) and hierarchical learning architectures. Via off-line training, the network dynamics can be automatically learned and appropriate resource allocation decisions can be rapidly obtained to satisfy the QoS requirements of vehicular applications. From simulation results, the proposed resource management schemes can achieve high delay/QoS satisfaction ratios.
Fourthly, we extend the proposed MVNET architecture to an unmanned aerial vehicle (UAV)-assisted MVNET and investigate multi-dimensional resource management for it. To efficiently provide on-demand resource access, the macro eNodeB and UAV, both mounted with MEC servers, cooperatively make association decisions and allocate proper amounts of resources to vehicles. Since there is no central controller, we formulate the resource allocation at the MEC servers as a distributive optimization problem to maximize the number of offloaded tasks while satisfying their heterogeneous QoS requirements, and then solve it with a multi-agent DDPG (MADDPG)-based method. Through centrally training the MADDPG model offline, the MEC servers, acting as learning agents, then can rapidly make vehicle association and resource allocation decisions during the online execution stage. From our simulation results, the MADDPG-based method can achieve a comparable convergence rate and higher delay/QoS satisfaction ratios than the benchmarks.
In summary, we have proposed an MEC-assisted vehicular network architecture and investigated the spectrum slicing and allocation, and multi-dimensional resource allocation in the MEC- and/or UAV-assisted vehicular networks in this thesis. The proposed architecture and schemes should provide useful guidelines for future research in multi-dimensional resource management scheme designing and resource utilization enhancement in highly dynamic wireless networks with diversified data services and applications
Blockchain Technology for Intelligent Transportation Systems: A Systematic Literature Review
The use of Blockchain technology has recently become widespread. It has emerged as an essential tool in various academic and industrial fields, such as healthcare, transportation, finance, cybersecurity, and supply chain management. It is regarded as a decentralized, trustworthy, secure, transparent, and immutable solution that innovates data sharing and management. This survey aims to provide a systematic review of Blockchain application to intelligent transportation systems in general and the Internet of Vehicles (IoV) in particular. The survey is divided into four main parts. First, the Blockchain technology including its opportunities, relative taxonomies, and applications is introduced; basic cryptography is also discussed. Next, the evolution of Blockchain is presented, starting from the primary phase of pre-Bitcoin (fundamentally characterized by classic cryptography systems), followed by the Blockchain 1.0 phase, (characterized by Bitcoin implementation and common consensus protocols), and finally, the Blockchain 2.0 phase (characterized by the implementation of smart contracts, Ethereum, and Hyperledger). We compared and identified the strengths and limitations of each of these implementations. Then, the state of the art of Blockchain-based IoV solutions (BIoV) is explored by referring to a large and trusted source database from the Scopus data bank. For a well-structured and clear discussion, the reviewed literature is classified according to the research direction and implemented IoV layer. Useful tables, statistics, and analysis are also presented. Finally, the open problems and future directions in BIoV research are summarized