9,595 research outputs found

    Lyα\alpha Leaks and Reionization

    Full text link
    Lyα\alpha absorption spectra of QSOs at redshifts z6z\simeq6 show complete Gunn-Peterson absorption troughs (dark gaps) separated by tiny leaks. The dark gaps are from the intergalactic medium (IGM) where the density of neutral hydrogen are high enough to produce almost saturated absorptions, however, where the transmitted leaks come from is still unclear so far. We demonstrate that leaking can originate from the lowest density voids in the IGM as well as the ionized patches around ionizing sources using semi-analytical simulations. If leaks were produced in lowest density voids, the IGM might already be highly ionized, and the ionizing background should be almost uniform; in contrast, if leaks come from ionized patches, the neutral fraction of IGM would be still high, and the ionizing background is significantly inhomogeneous. Therefore, the origin of leaking is crucial to determining the epoch of inhomogeneous-to-uniform transition of the the ionizing photon background. We show that the origin could be studied with the statistical features of leaks. Actually, Lyα\alpha leaks can be well defined and described by the equivalent width WW and the full width of half area WHW_{\rm H}, both of which are less contaminated by instrumental resolution and noise. It is found that the distribution of WW and WHW_{\rm H} of Lyα\alpha leaks are sensitive to the modeling of the ionizing background. We consider four representative reionization models. It is concluded that the leak statistics provides an effective tool to probe the evolutionary history of reionization at z56.5z\simeq5-6.5. Similar statistics would also be applicable to the reionization of He II at z3z \simeq 3(Abridged)Comment: 11 pages including 10 figures, accepted for publication in MNRA

    Mapping and analysis of changes in the riparian landscape structure of the Lockyer Valley Catchment, Queensland, Australia

    Get PDF
    [Abstract]: A case study of the Lockyer Valley catchment in Queensland, Australia, was conducted to develop appropriate mapping and assessment techniques to quantify the nature and magnitude of riparian landscape structural changes within a catchment. The study employed digital image processing techniques to produce land cover maps from the 1973 and 1997 Landsat imagery. Fixed and variable width buffering of streams were implemented using a geographic information system (GIS) to estimate the riparian zone and to subsequently calculate the landscape patterns using the Patch Analyst (Grid) program (a FRAGSTATS interface). The nature of vegetation clearing was characterised based on land tenure, slope and stream order. Using the Pearson chi-square test and Cramer’s V statistic, the relationships between the vegetation clearing and land tenure were further assessed. The results show the significant decrease in woody vegetation areas mainly due to conversion to pasture. Riparian vegetation corridors have become more fragmented, isolated and of much smaller patches. Land tenure was found to be significantly associated with the vegetation clearing, although the strength of association was weak. The large proportion of deforested riparian zones within steep slopes or first-order streams raises serious questions about the catchment health and the longer term potential for land degradation by upland clearing. This study highlights the use of satellite imagery and geographic information systems in mapping and analysis of landscape structural change, as well as the identification of key issues related to sensor spatial resolution, stream buffering widths, and the quantification of land transformation processes

    SPATIALLY EXPLICIT MODEL OF AREAS BETWEEN SUITABLE BLACK BEAR HABITAT IN EAST TEXAS AND BLACK BEAR POPULATIONS IN LOUISIANA, ARKANSAS, AND OKLAHOMA

    Get PDF
    Although black bears (Ursus americanus, Ursus americanus luteolus) were once found throughout the south-central United States, unregulated harvest and habitat loss resulted in severe range retractions and by the beginning of the twentieth century populations in Oklahoma, Louisiana, Texas and Arkansas were nearing extirpation. In response to these losses, translocation programs were initiated in Arkansas (1958-1968 & 2000-2006) and Louisiana (1964-1967 & 2001-2009). These programs successfully restored bears to portions of Louisiana and Arkansas, and, as populations in Arkansas began dispersing, to Oklahoma. In contrast, east Texas remains unoccupied despite the existence of suitable habitat in the region. To facilitate the establishment of a breeding population in east Texas, I sought to identify suitable habitat which bears could use for dispersal between known bear locations in Louisiana, Arkansas and Oklahoma and the east Texas recovery units. I utilized Maxent, a machine learning software, to model habitat suitability in this region. I collected known black bear presence locations (n=18,241) from state agencies in Louisiana, Oklahoma, Arkansas and east Texas and filtered them to reduce spatial autocorrelation (n=664). I also collected spatial data sets based on known black bear ecology to serve as environmental predictor variables. The model was developed at 30-m resolution and encompassed 417,076 km 2. The final model was selected to minimize model over-fitting while maintaining a high test Area Under the Receiver Operating Curve (AUC TEST)score. For final model interpretation and analysis, I used the 10th percentile training threshold available in Maxent which excludes the lowest 10% of predicted presence suitability scores from the binary predictive map, thus resulting in a more conservative predictive map. The final 10th percentile model predicted 43.7% of the pixels in the study area as suitable and 53.7 % percent of the pixels identified as potential recovery units by Kaminski et al. (2013, 2014) as suitable. To focus management efforts, I identified three movement zones with a high proportion of suitable habitat within which connectivity analyses were performed. Suitable patches greater than or equal to 12 km2 were classified within ArcGIS as stepping stone patches. Buffers of 3,500 m were generated around these patches to determine the level of functional connectivity in each zone. The final Maxent model confirmed that suitable bear habitat exists between source populations and the east Texas recovery units. The importance of percent of mast producing forest, percentage of cultivated crops and percentage of protected lands reflect what is known about basic bear biology and ecology. Furthermore, 153 stepping stone patches were identified within the movement zones, demonstrating that there is a reasonable chance of bears naturally dispersing to east Texas using the habitat identified in this study. Thus, protection of existing bear habitat and the stepping stone patches identified in this study should be a priority for managers seeking to facilitate natural bear recolonization of east Texas

    Bistability and regular spatial patterns in arid ecosystems.

    Get PDF
    A variety of patterns observed in ecosystems can be explained by resource–concentration mechanisms. A resource–concentration mechanism occurs when organisms increase the lateral flow of a resource toward them, leading to a local concentration of this resource and to its depletion from areas farther away. In resource–concentration systems, it has been proposed that certain spatial patterns could indicate proximity to discontinuous transitions where an ecosystem abruptly shifts from one stable state to another. Here, we test this hypothesis using a model of vegetation dynamics in arid ecosystems. In this model, a resource– concentration mechanism drives a positive feedback between vegetation and soil water availability. We derived the conditions leading to bistability and pattern formation. Our analysis revealed that bistability and regular pattern formation are linked in our model. This means that, when regular vegetation patterns occur, they indicate that the system is along a discontinuous transition to desertification. Yet, in real systems, only observing regular vegetation patterns without identifying the pattern-driving mechanism might not be enough to conclude that an ecosystem is along a discontinuous transition because similar patterns can emerge from different ecological mechanisms

    Predators do not spill over from forest fragments to maize fields in a landscape mosaic in central Argentina

    Get PDF
    South America is undergoing a rapid and large scale conversion of natural habitats to cultivated land. Ecosystem services (ESs) still remain important but their level and sustainability are not known. We quantified predation intensity in an Argentinian agricultural landscape containing remnants of the original chaco serrano forest by using artificial sentinel prey. We sought to identify the main predators, and the effect of landscape configuration and maize phenology on predation pressure by invertebrate and vertebrate predators in this landscape. The most common predators were chewing insects (50.4% predation events), birds (22.7%), and ants (17.5%). Overall predation rates in forest fragments (41.6% d-1) were significantly higher than in the surrounding maize fields (21.5% d-1). Invertebrate predation was higher inside and at the edge of forest fragments than within fields, and did not change with increasing distance from a fragment edge, indicating a lack of spillover from the native habitat remnants to the cultivated matrix at the local scale. Distance from a continuous forest had a positive impact on predation by invertebrates and a negative impact on vertebrate predation.Fil: Ferrante, Marco. Aarhus University. Flakkebjerg Research Centre. Department of Agroecology; DinamarcaFil: González, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Gabor L., Lovei. Aarhus University. Flakkebjerg Research Centre. Department of Agroecology; Dinamarc

    Rainfall interception by two deciduous Mediterranean forests of contrasting stature in Slovenia

    Get PDF
    Measurements of precipitation above the canopy, throughfall and stemflow were\ud made on the south and north-facing slopes of a deciduous forest on the experimental\ud watershed of the Dragonja river in SW Slovenia. The Dragonja watershed was\ud chosen for the experimental watershed, being of interest because of intensive natural\ud reforestation in the last decades that caused a decrease in minimum and maximum\ud flows. At the same time no noticeable precipitation and temperature changes were\ud observed. Two forest plots were selected. One is located on the north-facing slope\ud (1419 m2) and the other on the south-facing slope (615 m2). Analyses and modelling\ud were made for a one-year period from October 2000 to September 2001. The leaf\ud area index (LAI) was estimated by three methods, one direct and two indirect ones.\ud The obtained values of LAI with the direct method were 6.6 and 6.9 for the south and\ud north slopes, respectively. Measurements and regression analyses gave the mean\ud annual throughfall value (± standard error) on the south plot 67.1 (± 9.6) % of gross\ud precipitation, and 71.5 (± 11.6) % on the north plot. The average stemflow values\ud were 4.5 (± 0.8) % of gross precipitation in the south plot and 2.9 (± 0.6) % in the\ud north plot. The average annual interception losses amount to 28.4 (± 4.1) and 25.4 (±\ud 4.0) % for the south and north slopes, respectively. In the study a significant influence\ud of the south-east wind was proven. With regression analyses and the classification\ud decision tree model it was established that at the events with more than 7 mm of\ud precipitation and south-east wind with a speed higher than 4 m/s an unusually low\ud amount of throughfall occurred and thus high interception losses. The analytical\ud Gash model of rainfall interception (Gash, 1979; Gash et al., 1995) was successfully\ud applied. The results of the modelling corresponded well to the observed values and\ud were within the limits of the standard error of the observed values

    Ecological traits modulate bird species responses to forest fragmentation in an Amazonian anthropogenic archipelago

    Get PDF
    Aim: We assessed patterns of avian species loss and the role of morpho-ecological traits in explaining species vulnerability to forest fragmentation in an anthropogenic island system. We also contrasted observed and detectability-corrected estimates of island occupancy, which are often used to infer species vulnerability. Location: Tucuruí Hydroelectric Reservoir, eastern Brazilian Amazonia. Methods: We surveyed forest birds within 36 islands (3.4–2,551.5 ha) after 22 years of post-isolation history. We applied species–area relationships to assess differential patterns of species loss among three data sets: all species, forest specialists and habitat generalists. After controlling for phylogenetic non-independence, we used observed and detectability-corrected estimates of island occupancy separately to build competing models as a function of species traits. The magnitude of the difference between these estimates of island occupancy was contrasted against species detectability. Results: The rate of species loss as a function of island area reduction was higher for forest specialists than for habitat generalists. Accounting for the area effect, forest fragmentation did not affect the overall number of species regardless of the data set. Only the interactive model including natural abundance, habitat breadth and geographic range size was strongly supported for both estimates of island occupancy. For 30 species with detection probabilities below 30%, detectability-corrected estimates were at least tenfold higher than those observed. Conversely, differences between estimates were negligible or non-existent for all 31 species with detection probabilities exceeding 45.5%. Main conclusions: Predicted decay of avian species richness induced by forest loss is affected by the degree of habitat specialisation of the species under consideration, and may be unrelated to forest fragmentation per se. Natural abundance was the main predictor of species island occupancy, although habitat breadth and geographic range size also played a role. We caution against using occupancy models for low-detectability species, because overestimates of island occupancy reduce the power of species-level predictions of vulnerability

    Assessing a macroalgal foundation species: community variation with shifting algal assemblages

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2018Foundation species provide critical food and habitat to their associated communities. Consequently, they are disproportionately important in shaping community structure, promoting greater biodiversity and increased species abundance. In the Aleutian archipelago, once extensive kelp forests are now relatively rare and highly fragmented. This is due to unregulated urchin grazing shifting the majority of nearshore rocky-reefs from kelp forests to either urchin barrens or "transition forests" - kelp forests devoid of understory algae. The algal communities within kelp forests, transition forests, and urchin barrens represent a stepwise loss in fleshy algal guilds, a regression from a full algal community, to having only canopy kelp, to areas largely denuded of all fleshy algae. This stepwise loss of algal guilds was used to test the designation of the resident canopy-forming kelp, Eualaria fistulosa, as a foundation species--a species that has strong, positive effects on communities where it occurs. Therefore, I assessed the impact that E. fistulosa's occurrence had on faunal community structure (in terms of species diversity, abundance and biomass, and percent bottom cover)and invertebrate size-structure. This study found that the presence of E. fistulosa does not correspond to strong differences in invertebrate size-structure or faunal community structure. However, in kelp forests where E. fistulosa exists in tandem with a variety of subcanopy macroalgae, faunal communities are more species rich, have significantly different community structures with notably higher abundance, biomass, and percent cover of filter feeding taxa, and support sea urchin populations containing significantly higher proportions of larger individuals. Consequently, this study stresses the context dependent role of foundation species and suggests their strong, positive effects on associated communities may change with perturbations to ecosystems. To that end, this study suggests that we may need to reconsider the designation of E. fistulosa as a foundation species following the extensive fragmentation and range restriction that has occurred throughout much of the Aleutian Archipelago

    Scanning electrochemical cell microscopy : a versatile technique for nanoscale electrochemistry and functional imaging

    Get PDF
    Scanning electrochemical cell microscopy (SECCM) is a new pipette-based imaging technique purposely designed to allow simultaneous electrochemical, conductance, and topographical visualization of surfaces and interfaces. SECCM uses a tiny meniscus or droplet, confined between the probe and the surface, for high-resolution functional imaging and nanoscale electrochemical measurements. Here we introduce this technique and provide an overview of its principles, instrumentation, and theory. We discuss the power of SECCM in resolving complex structure-activity problems and provide considerable new information on electrode processes by referring to key example systems, including graphene, graphite, carbon nanotubes, nanoparticles, and conducting diamond. The many longstanding questions that SECCM has been able to answer during its short existence demonstrate its potential to become a major technique in electrochemistry and interfacial science
    corecore