127 research outputs found
A Spitzer-IRS Detection of Crystalline Silicates in a Protostellar Envelope
We present the Spitzer Space Telescope Infrared Spectrograph spectrum of the
Orion A protostar HOPS-68. The mid-infrared spectrum reveals crystalline
substructure at 11.1, 16.1, 18.8, 23.6, 27.9, and 33.6 microns superimposed on
the broad 9.7 and 18 micron amorphous silicate features; the substructure is
well matched by the presence of the olivine end-member forsterite. Crystalline
silicates are often observed as infrared emission features around the
circumstellar disks of Herbig Ae/Be stars and T Tauri stars. However, this is
the first unambiguous detection of crystalline silicate absorption in a cold,
infalling, protostellar envelope. We estimate the crystalline mass fraction
along the line-of-sight by first assuming that the crystalline silicates are
located in a cold absorbing screen and secondly by utilizing radiative transfer
models. The resulting crystalline mass fractions of 0.14 and 0.17,
respectively, are significantly greater than the upper limit found in the
interstellar medium (< 0.02-0.05). We propose that the amorphous silicates were
annealed within the hot inner disk and/or envelope regions and subsequently
transported outward into the envelope by entrainment in a protostellar outflowComment: Accepted to Astrophysical Journal Letters, 2011 April 19: 6 pages, 3
figures, 2 table
Anomalous CO2 Ice Toward HOPS-68: A Tracer of Protostellar Feedback
We report the detection of a unique CO2 ice band toward the deeply embedded,
low-mass protostar HOPS-68. Our spectrum, obtained with the Infrared
Spectrograph onboard the Spitzer Space Telescope, reveals a 15.2 micron CO2 ice
bending mode profile that cannot modeled with the same ice structure typically
found toward other protostars. We develop a modified CO2 ice profile
decomposition, including the addition of new high-quality laboratory spectra of
pure, crystalline CO2 ice. Using this model, we find that 87-92% of the CO2 is
sequestered as spherical, CO2-rich mantles, while typical interstellar ices
show evidence of irregularly-shaped, hydrogen-rich mantles. We propose that (1)
the nearly complete absence of unprocessed ices along the line-of-sight is due
to the flattened envelope structure of HOPS-68, which lacks cold absorbing
material in its outer envelope, and possesses an extreme concentration of
material within its inner (10 AU) envelope region and (2) an energetic event
led to the evaporation of inner envelope ices, followed by cooling and
re-condensation, explaining the sequestration of spherical, CO2 ice mantles in
a hydrogen-poor mixture. The mechanism responsible for the sublimation could be
either a transient accretion event or shocks in the interaction region between
the protostellar outflow and envelope. The proposed scenario is consistent with
the rarity of the observed CO2 ice profile, the formation of nearly pure CO2
ice, and the production of spherical ice mantles. HOPS-68 may therefore provide
a unique window into the protostellar feedback process, as outflows and heating
shape the physical and chemical structure of protostellar envelopes and
molecular clouds.Comment: Accepted to the Astrophysical Journal, 2013 February 15: 14 pages, 9
figures, 3 table
Properties of Protostars in the Elephant Trunk in the Globule IC 1396A
Extremely red objects, identified in the early Spitzer Space Telescope observations of the bright-rimmed globule IC 1396A and photometrically classified as Class I protostars and Class II T Tauri stars based on their mid-infrared (mid-IR) colors, were spectroscopically observed at 5.5-38 μm (Spitzer Infrared Spectrograph), at the 22 GHz water maser frequency (National Radio Astronomy Observatory Green Bank Telescope), and in the optical (Palomar Hale 5 m) to confirm their nature and further elucidate their properties. The sources photometrically identified as Class I, including IC 1396A:α, γ, δ, ε, and ζ, are confirmed as objects dominated by accretion luminosity from dense envelopes, with accretion rates 1-10 × 10^–6 M☉ yr^–1 and present stellar masses 0.1-2 M☉. The Class I sources have extremely red continua, still rising at 38 μm, with a deep silicate absorption at 9-11 μm, weaker silicate absorption around 18 μm, and weak ice features including CO2 at 15.2 μm and H2O at 6 μm. The ice/silicate absorption ratio in the envelope is exceptionally low for the IC 1396A protostars, compared to those in nearby star-forming regions, suggesting that the envelope chemistry is altered by the radiation field or globule pressure. Only one 22 GHz water maser was detected in IC 1396A; it is coincident with a faint mid-IR source, offset from near the luminous Class I protostar IC 1396A:γ. The maser source, IC 1396A:γb, has luminosity less than 0.1 L☉, the first H2O maser from such a low-luminosity object. Two near-infrared (NIR) H2 knots on opposite sides of IC 1396A:γ reveal a jet, with an axis clearly distinct from the H2O maser of IC 1396A:γb. The objects photometrically classified as Class II, including IC 1396A:β, θ, Two Micron All Sky Survey (2MASS)J 21364964+5722270, 2MASSJ 21362507+5727502, LkHα 349c, Tr 37 11-2146, and Tr 37 11-2037, are confirmed as stars with warm, luminous disks, with a silicate emission feature at 9-11 μm, and bright Hα emission; therefore, they are young, disk-bearing, classical T Tauri stars. The disk properties change significantly with source luminosity: low-mass (G-K) stars have prominent 9-11 emission features due to amorphous silicates while higher-mass (A-F) stars have weaker features requiring abundant crystalline silicates. A mineralogical model that fits the wide- and low-amplitude silicate feature of IC 1396A:θ requires small grains of crystalline olivine (11.3 μm peak) and another material to to explain its 9.1 μm peak; reasonable fits are obtained with a phyllosilicate, quartz, or relatively large (greater than 10 μm) amorphous olivine grains. The distribution of Class I sources is concentrated within the molecular globule, while the Class II sources are more widely scattered. Combined with the spectral results, this suggests two phases of star formation, the first (4 Myr ago) leading to the widespread Class II sources and the central O star of IC 1396 and the second (less than 1 Myr ago) occurring within the globule. The recent phase was likely triggered by the wind and radiation of the central O star of the IC 1396 H II region
First Fruits of the Spitzer Space Telescope: Galactic and Solar System Studies
This article provides a brief overview of the Spitzer Space Telescope and
discusses its initial scientific results on galactic and solar system science.Comment: Review article to appear in slightly different format in Vol.44 of
Annual Reviews of Astronomy and Astrophysics, 200
FU Orionis - The MIDI/VLTI Perspective
We present the first mid-infrared interferometric measurements of FU Orionis.
We clearly resolve structures that are best explained with an optically thick
accretion disk. A simple accretion disk model fits the observed SED and
visibilities reasonably well and does not require the presence of any
additional structure such as a dusty envelope. The inclination and also the
position angle of the disk can be constrained from the multibaseline
interferometric observations. Our disk model is in general agreement with most
published near-infrared interferometric measurements. From the shape and
strength of the 8-13 micrometer spectrum the dust composition of the accretion
disk is derived for the first time. We conclude that most dust particles are
amorphous and already much larger than those typically observed in the ISM.
Although the high accretion rate of the system provides both, high temperatures
out to large radii and an effective transport mechanism to distribute
crystalline grains, we do not see any evidence for crystalline silicates
neither in the total spectrum nor in the correlated flux spectra from the inner
disk regions. Possible reasons for this non-detection are mentioned. All
results are discussed in context with other high-spatial resolution
observations of FU Ori and other FU Ori objects. We also address the question
whether FU Ori is in a younger evolutionary stage than a classical TTauri star.Comment: 41 pages (aastex style), 11 figures, 8 tables, accepted by Ap
The characterization of volatiles associated with young stellar objects
In the first portion of this work, we searched for differences in volatiles within a single star forming region, Rho Ophiuchi. We determined the amount, temperature, and composition of two ice features, the bending modes of CO₂ and H₂O at 15 µm and 6 µm, respectively, toward 28 Young Stellar Objects (YSOs). We found that more than 50% of the YSOs studied contained a portion of crystalline CO₂ ice. We also found that some sources with Flat or borderline Class II Spectral Energy Distributions (SEDs) have a larger abundance of CO₂ ice with respect to H₂O ice. In addition to intracloud differences, we compared our results with several other star forming regions, high mass YSOs, and background objects. The average abundance of CO₂ with respect to H2O in Rho Oph is comparable to that in Taurus, Perseus, and the value reported by Oberg et al. (2011) toward high mass YSOs, however, it is less than the average abundance reported toward Corona Australis, Serpens, and the value cited by Oberg et al. (2011) toward low mass YSOs. The second half of this work involved a study of gaseous HCN, C₂H₂, and CO toward a low mass binary system, GV Tau. We report the second detection of these simple molecules toward a low mass YSO. The abundances of these molecules are consistent with that toward the first low mass YSO with a detection, IRS 46 (Lahuis et al., 2006), models from Willacy and Woods (2009), Walsh et al. (2010), and Markwick et al. (2002), and comets. We also found that these molecules have a rotational temperature of ~100 K - 200 K, indicating they may be located in the warm molecular layer of the disk. This work is part of a larger study to characterize volatiles (others include CH₄, NH₃, the 6.8 µm absorption feature, and CH₃OH) in the gas and/or solid phase toward YSOs in different star forming regions. This characterization includes temperature, location, mass, evolutionary state, and abundance. These characteristics will be used as a diagnostic tool to determine the evolution of molecules during the star formation process
The characterization of volatiles associated with young stellar objects
In the first portion of this work, we searched for differences in volatiles within a single star forming region, Rho Ophiuchi. We determined the amount, temperature, and composition of two ice features, the bending modes of CO₂ and H₂O at 15 µm and 6 µm, respectively, toward 28 Young Stellar Objects (YSOs). We found that more than 50% of the YSOs studied contained a portion of crystalline CO₂ ice. We also found that some sources with Flat or borderline Class II Spectral Energy Distributions (SEDs) have a larger abundance of CO₂ ice with respect to H₂O ice. In addition to intracloud differences, we compared our results with several other star forming regions, high mass YSOs, and background objects. The average abundance of CO₂ with respect to H2O in Rho Oph is comparable to that in Taurus, Perseus, and the value reported by Oberg et al. (2011) toward high mass YSOs, however, it is less than the average abundance reported toward Corona Australis, Serpens, and the value cited by Oberg et al. (2011) toward low mass YSOs. The second half of this work involved a study of gaseous HCN, C₂H₂, and CO toward a low mass binary system, GV Tau. We report the second detection of these simple molecules toward a low mass YSO. The abundances of these molecules are consistent with that toward the first low mass YSO with a detection, IRS 46 (Lahuis et al., 2006), models from Willacy and Woods (2009), Walsh et al. (2010), and Markwick et al. (2002), and comets. We also found that these molecules have a rotational temperature of ~100 K - 200 K, indicating they may be located in the warm molecular layer of the disk. This work is part of a larger study to characterize volatiles (others include CH₄, NH₃, the 6.8 µm absorption feature, and CH₃OH) in the gas and/or solid phase toward YSOs in different star forming regions. This characterization includes temperature, location, mass, evolutionary state, and abundance. These characteristics will be used as a diagnostic tool to determine the evolution of molecules during the star formation process
On the nature of the enigmatic object IRAS 19312+1950: A rare phase of massive star formation?
IRAS 19312+1950 is a peculiar object that has eluded firm characterization
since its discovery, with combined maser properties similar to an evolved star
and a young stellar object (YSO). To help determine its true nature, we
obtained infrared spectra of IRAS 19312+1950 in the range 5-550 m using
the Herschel and Spitzer space observatories. The Herschel PACS maps exhibit a
compact, slightly asymmetric continuum source at 170 m, indicative of a
large, dusty circumstellar envelope. The far-IR CO emission line spectrum
reveals two gas temperature components: of material at
K, and of material at K. The OI 63
m line is detected on-source but no significant emission from atomic ions
was found. The HIFI observations display shocked, high-velocity gas with
outflow speeds up to 90 km s along the line of sight. From Spitzer
spectroscopy, we identify ice absorption bands due to HO at 5.8 m and
CO at 15 m. The spectral energy distribution is consistent with a
massive, luminous () central source surrounded by a
dense, warm circumstellar disk and envelope of total mass
-, with large bipolar outflow cavities. The combination
of distinctive far-IR spectral features suggest that IRAS 19312+1950 should be
classified as an accreting high-mass YSO rather than an evolved star. In light
of this reclassification, IRAS 19312+1950 becomes only the 5th high-mass
protostar known to exhibit SiO maser activity, and demonstrates that 18 cm OH
maser line ratios may not be reliable observational discriminators between
evolved stars and YSOs.Comment: 16 pages. Accepted for publication in Ap
- …