26 research outputs found

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    A review of acoustic pipeline monitoring systems used to detect bursts and blockages

    Get PDF
    Abstract: Pipeline leakages, bursts, and blockages are issues that are experienced by many urban communities globally and locally. These issues emerge from numerous variables such as pipe deterioration and human-instigated assembly faults. Leakages and bursts of the pipelines are some of the major causes of the increased scarcity of drinking water. These pipeline issues do not only affect the society but also apply pressure to the economy and the environment. As such, these issues need an undivided attention to prevent them from escalating. This study proposes a system design of an acoustic monitoring system for pipeline leakages, bursts, and blockages. To achieve this, a review of the existing methods and models for pipeline monitoring was conducted. Comparison of existing methods was based on system characteristics, i.e., operation efficiency, maintenance efficiency, ease of installation, cost efficiency, energy efficiency, and overall reliability. These characteristics form part of the most vital characteristics of a system concerning its reliability. To better propose the best solution, the social, environmental, and economic influences of the above-mentioned pipeline issues are just as important to consider. A comparative analysis on the performance of the existing models and systems was performed to provide the best guide in determining the best model in pipeline monitoring for leakages, bursts, and blockages. These systems include a) Conventional and Visual Method, b) Wireless Sensor Network Systems, c) Acoustic Monitoring Systems Based on WSNs, d) Sound Variation Vibration Sensor Systems, e) SmartPipe Based on WSNs Approach, f) ADIGE Method, g) SPAMMS System, h). EARNPIPE Systems, and i) Magnetic Induction Based WSNs (MISE-PIPE). Comparisons made were based on other works by different authors, no empirical measurements were taken. A framework was then proposed and executed to examine the best design for monitoring pipelines. Based on available methods and models, the model proposed in this paper is a hybrid model which combines the best of what the existing models can offer to monitor a pipeline under and above ground. Many existing models can only manage to perform task exceptionally but with a lot of drawbacks on other features such as burst detection. The combination of the most efficient models to a single model comes with a lot of benefits and less drawbacks. As with any system in existence, a maintenance plan is needed and was discussed to ensure the best operation of the system

    A hybrid model-based method for leak detection in large scale water distribution networks

    Get PDF
    During the past decades, the problem of finding leaks in Water Distribution Networks (WDN) has been controversy. The quicker detection of leaks prevents water loss and helps avoiding their economic and environmental consequences. On the other hand, increasing the speed of leak detection increases the false leak detection that imposes high costs. In this paper, we propose a real-time hybrid method using AI algorithms and hydraulic relations for detecting and locating leaks and identifying the volume of losses material. The proposed method relies on simple and cost-effective flow sensors installed on each junction in the pipeline network. We demonstrate how influential features for leak detection would be generated by using hydraulic equations like Hazen-Williams, Darcy-Weisbach and pressure drop. Through exploiting Decision Tree, KNN, random forest, and Bayesian network we build predictive models and based on the pipeline topology, we locate leaks and their pressure. Comparing the results of applying the proposed method on various leak scenarios shows that the proposed method in this paper, outperforms other existing methods

    A Self-Powered Wireless Water Quality Sensing Network Enabling Smart Monitoring of Biological and Chemical Stability in Supply Systems

    Get PDF
    A smart, safe, and efficient management of water is fundamental for both developed and developing countries. Several wireless sensor networks have been proposed for real-time monitoring of drinking water quantity and quality, both in the environment and in pipelines. However, surface fouling significantly affects the long-term reliability of pipes and sensors installed in-line. To address this relevant issue, we presented a multi-parameter sensing node embedding a miniaturized slime monitor able to estimate the micrometric thickness and type of slime. The measurement of thin deposits in pipes is descriptive of water biological and chemical stability and enables early warning functions, predictive maintenance, and more efficient management processes. After the description of the sensing node, the related electronics, and the data processing strategies, we presented the results of a two-month validation in the field of a three-node pilot network. Furthermore, self-powering by means of direct energy harvesting from the water flowing through the sensing node was also demonstrated. The robustness and low cost of this solution enable its upscaling to larger monitoring networks, paving the way to water monitoring with unprecedented spatio-temporal resolution. Document type: Articl

    Survey of Localization for Internet of Things Nodes: Approaches, Challenges and Open Issues

    Get PDF
    With exponential growth in the deployment of Internet of Things (IoT) devices, many new innovative and real-life applications are being developed. IoT supports such applications with the help of resource-constrained fixed as well as mobile nodes. These nodes can be placed in anything from vehicles to the human body to smart homes to smart factories. Mobility of the nodes enhances the network coverage and connectivity. One of the crucial requirements in IoT systems is the accurate and fast localization of its nodes with high energy efficiency and low cost. The localization process has several challenges. These challenges keep changing depending on the location and movement of nodes such as outdoor, indoor, with or without obstacles and so on. The performance of localization techniques greatly depends on the scenarios and conditions from which the nodes are traversing. Precise localization of nodes is very much required in many unique applications. Although several localization techniques and algorithms are available, there are still many challenges for the precise and efficient localization of the nodes. This paper classifies and discusses various state-of-the-art techniques proposed for IoT node localization in detail. It includes the different approaches such as centralized, distributed, iterative, ranged based, range free, device-based, device-free and their subtypes. Furthermore, the different performance metrics that can be used for localization, comparison of the different techniques, some prominent applications in smart cities and future directions are also covered

    Novel communication system for buried water pipe monitoring using acoustic signal propagation along the pipe

    Get PDF
    This research presents the design and development of a novel wireless underground communication system for buried water pipe monitoring, using acoustic signal propagation along the pipe. One of the main challenges for wireless underground communication in buried water pipe monitoring is the limitation of reliable data communication range, between an underground transmitter and receiver, to less than 3 metres using radio signal propagation. In this work, an alternative means of enabling data communication within an underground soil environment was investigated by using the water pipe wall as an acoustic communication medium. With acoustic transducers carefully selected from an abundance of commercially available options, a digital communication transmitter was developed alongside a separate digital communication receiver according to the low cost (tens of pounds at most), low power supply requirement (in the order of 1 Watt-hour) and miniature (centimetre scale) size of a wireless communication node. Following the transmitter and receiver design, the developed system was tested in the laboratory along an above ground medium density polyethylene (MDPE) pipe as well as in the field along buried steel and MDPE pipes with reliable digital communication (i.e., 0% bit error rate) successfully achieved at 3.0 and 5.6 m along the buried steel and MDPE pipes respectively with these pipes buried in well or poorly graded SAND (SW or SP). To analyse acoustic signal attenuation along the water pipes (a key requirement for predicting maximum data transmission range within the proposed communication system), three separate approaches were employed, i.e., analytical, numerical, and experimental (laboratory and field) approaches. While the analytical model was based on fundamental acoustic propagation equations, the numerical model was developed using Abaqus software to simulate acoustic propagation along the pipe; and the experimental approach directly measured acoustic signal attenuation along the pipes in the laboratory and field experiments. The analytical model and experimental results were used to validate the acoustic attenuation predictions of the numerical model. For the above ground MDPE pipe, the numerical model and laboratory experiments predicted a maximum data communication range of 18-42 m while for the buried MDPE and steel pipes, the field measurements predicted a maximum data communication range of 14-17 m. The results for the buried water pipes are particularly important as they show the possibility of using low frequency (< 1 kHz) acoustic signal propagation along a buried water pipe for achieving reliable wireless underground communication in soil

    On reliable and secure RPL (routing protocol low-power and lossy networks) based monitoring and surveillance in oil and gas fields

    Get PDF
    Different efforts have been made to specify protocols and algorithms for the successful operation of the Internet of things Networks including, for instance, the Low Power and Lossy Networks (LLNs) and Linear Sensor Networks (LSNs). Into such efforts, IETF, the Internet Engineering Task Force, created a working group named, ROLL, to investigate the requirement of such networks and devising more efficient solutions. The effort of this group has resulted in the specification of the IPv6 Routing Protocol for LLNs (RPL), which was standardized in 2012. However, since the introduction of RPL, several studies have reported that it suffers from various limitations and weaknesses including scalability, slow convergence, unfairness of load distribution, inefficiency of bidirectional communication and security, among many others. For instance, a serious problem is RPL’s under-specification of DAO messages which may result in conflict and inefficient implementations leading to a poor performance and scalability issues. Furthermore, RPL has been found to suffer from several security issues including, for instance, the DAO flooding attack, in which the attacker floods the network with control messages aiming to exhaust network resources. Another fundamental issue is related to the scarcity of the studies that investigate RPL suitability for Linear Sensor Networks (LSN) and devising solution in the lieu of that.Motivated by these observations, the publications within this thesis aim to tackle some of the key gaps of the RPL by introducing more efficient and secure routing solutions in consideration of the specific requirements of LLNs in general and LSNs as a special case. To this end, the first publication proposes an enhanced version of RPL called Enhanced-RPL aimed at mitigating the memory overflow and the under-specification of the of DAOs messages. Enhanced-RPL has shown significant reduction in control messages overhead by up to 64% while maintaining comparable reliability to RPL. The second publication introduces a new technique to address the DAO attack of RPL which has been shown to be effective in mitigating the attack reducing the DAO overhead and latency by up to 205% and 181% respectively as well as increasing the PDR by up to 6% latency. The third and fourth publications focus on analysing the optimal placement of nodes and sink movement pattern (fixed or mobile) that RPL should adopt in LSNs. It was concluded based on the results obtained that RPL should opt for fixed sinks with 10 m distance between deployed nodes

    5G and Beyond

    Get PDF
    This open-access book aims to highlight the coming surge of 5G network-based applications and predicts that the centralized networks and their current capacity will be incapable of meeting the demands. The book emphasizes the benefits and challenges associated with the integration of 5G networks with varied applications. Further, the book gathers and investigates the most recent 5G-based research solutions that handle security and privacy threats while considering resource-constrained wireless devices. The information, applications, and recent advances discussed in this book will serve to be of immense help to practitioners, database professionals, and researchers
    corecore