77,737 research outputs found
Strengthening America's Best Idea: An Independent Review of the National Park Service's Natural Resource Stewardship and Science Directorate
NRSS requested that an independent panel of the National Academy conduct a review of its effectiveness in five core functions, its relationships with key internal stakeholders, and its performance measurement system. Among other things, the National Park Service's Natural Resource Stewardship and Science Directorate (NRSS) is responsible for providing usable natural and social science information throughout the National Park Service (NPS). NRSS leadership requested this review of the directorate's performance on five core functions, its relationships with key internal NPS stakeholders, and its performance measurement system.Main FindingsThe panel determined that NRSS is a highly regarded organization that provides independent, credible scientific expertise and technical information. The panel also found that NRSS and NPS have additional opportunities to advance natural resource stewardship throughout the Service. If implemented, the panel's eight major recommendations will: (1) help the Service respond to the parks' environmental challenges while raising public awareness about the condition of these special places; (2) strengthen NRSS as an organization; (3) promote scientifically based decision-making at the national, regional, and park levels; and (4) improve the existing performance measurement system
A Microcontroller Based System for Controlling Patient Respiratory Guidelines
The need of making improvements in obtaining (in a non-invasive
way) and monitoring the breathing rate parameters in a patient emerges due to
(1) the great amount of breathing problems our society suffer, (2) the problems
that can be solved, and (3) the methods used so far. Non-specific machines are
usually used to carry out these measures or simply calculate the number of
inhalations and exhalations within a particular timeframe. These methods lack of
effectiveness and precision thus, influencing the capacity of getting a good
diagnosis. This proposal focuses on drawing up a technology composed of a
mechanism and a user application which allows doctors to obtain the breathing
rate parameters in a comfortable and concise way. In addition, such parameters
are stored in a database for potential consultation as well as for the medical
history of the patients. For this, the current approach takes into account the
needs, the capacities, the expectations and the user motivations which have been
compiled by means of open interviews, forum discussions, surveys and application
uses. In addition, an empirical evaluation has been conducted with a set of
volunteers. Results indicate that the proposed technology may reduce cost and
improve the reliability of the diagnosis.Ministerio de EconomĂa y Competitividad TIN2016-76956-C3-2-RMinisterio de EconomĂa y Competitividad TIN2015-71938-RED
Thermal dosimetry for bladder hyperthermia treatment. An overview.
The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments
Applications of next-generation sequencing technologies and computational tools in molecular evolution and aquatic animals conservation studies : a short review
Aquatic ecosystems that form major biodiversity hotspots are critically threatened due to environmental and anthropogenic stressors. We believe that, in this genomic era, computational methods can be applied to promote aquatic biodiversity conservation by addressing questions related to the evolutionary history of aquatic organisms at the molecular level. However, huge amounts of genomics data generated can only be discerned through the use of bioinformatics. Here, we examine the applications of next-generation sequencing technologies and bioinformatics tools to study the molecular evolution of aquatic animals and discuss the current challenges and future perspectives of using bioinformatics toward aquatic animal conservation efforts
Diagnosis of centrocestus formosanus infection in zebrafish (Danio rerio) in Italy: A window to a new globalization-derived invasive microorganism
Centrocestus formosanus is a digenetic trematode with a complex life cycle, involving invertebrate and vertebrate hosts, humans included. In particular, it causes gill lesions and mortality in freshwater fish species, and gastrointestinal symptoms in infected humans. Here, we describe the occurrence of C. formosanus infection in zebrafish imported in Italy and propose a newly designed species-specific primer pair to ameliorate the diagnostic investigations for C. formosanus. Gill arches of 30 zebrafish were examined for the presence of encysted metacercariae under a stereomicroscope and processed through molecular analyses targeting the ribosomal internal transcribed sequence 2 (ITS2). Although C. formosanus distribution was originally restricted to Asia, it has been subsequently reported in new countries, revealing itself as an invasive species and raising important concerns for biodiversity, economy, scientific research, as well as animal and public health. Given the crucial role played by the ornamental fish industry in spreading this parasite, there is an urgent need for control measures to prevent the introduction and establishment of C. formosanus in non-endemic areas, including Europe. We also suggest developing new strategies in microbiology and epidemiology to better explore this new globalization-derived invasive species
MobiHealth-Innovative 2.5/3G mobile services and applications for health care
MobiHealth aims at introducing new mobile value added services in the area of healthcare, based on 2.5 (GPRS) and 3G (UMTS) technologies, thus promoting the use and deployment of GPRS and UMTS. This will be achieved by the integration of sensors and actuators to a Wireless Body Area Network (BAN). These sensors and actuators will continuously measure and transmit vital constants along with audio and video to health service providers and brokers, improving on one side the life of patients and allowing on the other side the introduction of new value-added services in the areas of disease prevention and diagnostic, remote assistance, para-health services, physical state monitoring (sports) and even clinical research. Furthermore, the MobiHealth BAN system will support the fast and reliable application of remote assistance in case of accidents by allowing the paramedics to send reliable vital constants data as well as audio and video directly from the accident site
Classification of non-indigenous species based on their impacts: Considerations for application in marine management
Assessment of the ecological and economic/societal impacts of the introduction of non-indigenous species (NIS) is one of the primary focus areas of bioinvasion science in terrestrial and aquatic environments, and is considered essential to management. A classification system of NIS, based on the magnitude of their environmental impacts, was recently proposed to assist management. Here, we consider the potential application of this classification scheme to the marine environment, and offer a complementary framework focussing on value sets in order to explicitly address marine management concerns. Since existing data on marine NIS impacts are scarce and successful marine removals are rare, we propose that management of marine NIS adopt a precautionary approach, which not only would emphasise preventing new incursions through pre-border and at-border controls but also should influence the categorisation of impacts. The study of marine invasion impacts requires urgent attention and significant investment, since we lack the luxury of waiting for the knowledge base to be acquired before the window of opportunity closes for feasible management
Application of an Ultrasonic Sensor to Monitor Soil Erosion and Deposition
While erosion and deposition are naturally occurring processes, these processes can be accelerated by human influences. The acceleration of erosion causes damage to human assets and costs billions of dollars to mitigate. Monitoring erosion at high resolutions can provide researchers and managers the data necessary to help manage erosion. Current erosion monitoring methods tend to be invasive to the area, record low frequency measurements, have a narrow spatial range of measurement, or are very expensive. There is a need for an affordable monitoring system capable of monitoring erosion and deposition non-invasively at a high resolution. The objectives of this research were to (1) design and construct a non-invasive sediment monitoring system (SMS) using an ultrasonic sensor capable of monitoring erosion and deposition continuously, (2) test the system in the lab and field, (3) and determine the applications and limitations of the system. The ultrasonic sensor measures the time of reflectance of sound waves to calculate the distance to the area non-invasively. The SMS was tested in the lab to determine the extent to which the soil type, slope, surface topography, change in distance and vegetation impact the SMSâs ultrasonic sensorâs measurement. It was found that the soil type, slope and surface topography had little effect on the measurement, but the change in distance of the measurement and the introduction of vegetation impacted the measurement. The error in measurement increased as the sensing distance increased, and vegetation interferes with the measurement. In the field during high flows, as erosion and deposition occur, the changes in distance were determined in near real-time, allowing for the calculation of erosion and deposition quantities. The system was deployed to monitor deposition on sandy streambanks in the Nebraska Sandhills and erosion on a streambank and field plot in Lincoln, Nebraska. The system was proven successful in measuring sediment change during high flow events but yielded some error; ±1.06 mm in controlled lab settings and ±10.79 mm when subjected to environmental factors such as temperature, relative humidity and wind.
Advisors: Aaron Mittelstet and Nancy Shan
Checkpointing as a Service in Heterogeneous Cloud Environments
A non-invasive, cloud-agnostic approach is demonstrated for extending
existing cloud platforms to include checkpoint-restart capability. Most cloud
platforms currently rely on each application to provide its own fault
tolerance. A uniform mechanism within the cloud itself serves two purposes: (a)
direct support for long-running jobs, which would otherwise require a custom
fault-tolerant mechanism for each application; and (b) the administrative
capability to manage an over-subscribed cloud by temporarily swapping out jobs
when higher priority jobs arrive. An advantage of this uniform approach is that
it also supports parallel and distributed computations, over both TCP and
InfiniBand, thus allowing traditional HPC applications to take advantage of an
existing cloud infrastructure. Additionally, an integrated health-monitoring
mechanism detects when long-running jobs either fail or incur exceptionally low
performance, perhaps due to resource starvation, and proactively suspends the
job. The cloud-agnostic feature is demonstrated by applying the implementation
to two very different cloud platforms: Snooze and OpenStack. The use of a
cloud-agnostic architecture also enables, for the first time, migration of
applications from one cloud platform to another.Comment: 20 pages, 11 figures, appears in CCGrid, 201
- âŠ