2,431 research outputs found
Review of trends and targets of complex systems for power system optimization
Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107
Mitigating unbalance using distributed network reconfiguration techniques in distributed power generation grids with services for electric vehicles: A review
© 2019 Elsevier Ltd With rapid movement to combat climate change by reducing greenhouse gases, there is an increasing trend to use more electric vehicles (EVs) and renewable energy sources (RES). With more EVs integration into electricity grid, this raises many challenges for the distribution service operators (DSOs) to integrate such RES-based, distributed generation (DG) and EV-like distributed loads into distribution grids. Effective management of distribution network imbalance is one of the challenges. The distribution network reconfiguration (DNR) techniques are promising to address the issue of imbalance along with other techniques such as the optimal distributed generation placement and allocation (OPDGA) method. This paper presents a systematic and thorough review of DNR techniques for mitigating unbalance of distribution networks, based on papers published in peer-reviewed journals in the last three decades. It puts more focus on how the DNR techniques have been used to manage network imbalance due to distributed loads and DG units. To the best of our knowledge, this is the first attempt to review the research works in the field using DNR techniques to mitigate unbalanced distribution networks. Therefore, this paper will serve as a prime source of the guidance for mitigating network imbalance using the DNR techniques to the new researchers in this field
Optimal Placement of Distributed Generation Sources in Order to Reduce Loss and Improve Voltage Profiles in Power Distribution Networks Using Genetic Algorithms
In this paper, an optimal placement undertaken by the DGs in radial distribution system was presented and optimization parameters in determining the optimal placement of DG reducing losses and improving the increase of voltage profiles were reliable. To solve the problem, genetic algorithm with real codes and backward – forward power-flow method based on the distribution network was used. All cases were analyzed and calculated by the MATLAB programming software and on the IEEE 20-bus network. Finally, the losses with and without DG insertion were shown which confirmed we worked properly
Optimal Placement of Distributed Generation Sources in Order to Reduce Loss and Improve Voltage Profiles in Power Distribution Networks Using Genetic Algorithms
In this paper, an optimal placement undertaken by the DGs in radial distribution system was presented and optimization parameters in determining the optimal placement of DG reducing losses and improving the increase of voltage profiles were reliable. To solve the problem, genetic algorithm with real codes and backward – forward power-flow method based on the distribution network was used. All cases were analyzed and calculated by the MATLAB programming software and on the IEEE 20-bus network. Finally, the losses with and without DG insertion were shown which confirmed we worked properly
Power quality and electromagnetic compatibility: special report, session 2
The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems.
Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages).
The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks:
Block 1: Electric and Magnetic Fields, EMC, Earthing systems
Block 2: Harmonics
Block 3: Voltage Variation
Block 4: Power Quality Monitoring
Two Round Tables will be organised:
- Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13)
- Reliability Benchmarking - why we should do it? What should be done in future? (RT 15
Optimal Placement of Distributed Generation Sources in Order to Reduce Loss and Improve Voltage Profiles in Power Distribution Networks Using Genetic Algorithms
In this paper, an optimal placement undertaken by the DGs in radial distribution system was presented and optimization parameters in determining the optimal placement of DG reducing losses and improving the increase of voltage profiles were reliable. To solve the problem, genetic algorithm with real codes and backward – forward power-flow method based on the distribution network was used. All cases were analyzed and calculated by the MATLAB programming software and on the IEEE 20-bus network. Finally, the losses with and without DG insertion were shown which confirmed we worked properly
Review of distribution network phase unbalance: Scale, causes, consequences, solutions, and future research direction
Phase unbalance is widespread in the distribution networks in the UK, continental Europe, US, China, and other countries. First, this paper reviews the mass scale of phase unbalance and its causes and consequences. Three challenges arise from phase rebalancing: the scalability, data scarcity, and adaptability (towards changing unbalance over time) challenges. Solutions to address the challenges are: 1) using retrofit-able, maintenance-free, automatic solutions to overcome the scalability challenge; 2) using data analytics to overcome the data-scarcity challenge; and 3) using phase balancers or other online phase rebalancing solutions to overcome the adaptability challenge. This paper categorizes existing phase rebalancing solutions into three classes: 1) load/lateral re-phasing; 2) using phase balancers; 3) controlling energy storage, electric vehicles, distributed generation, and micro-grids for phase rebalancing. Their advantages and limitations are analyzed and ways to overcome the limitations are recommended. Finally, this paper suggests future research topics: 1) long-term forecast of phase unbalance; 2) whole-system analysis of the unbalance-induced costs; 3) phase unbalance diagnosis for data-scarce LV networks; 4) techno-commercial solutions to exploit the flexibility from large three-phase customers for phase balancing; 5) the optimal placement of phase balancers; 6) the transition from single-phase customers to three-phase customers
Recent trends of the most used metaheuristic techniques for distribution network reconfiguration
Distribution network reconfiguration (DNR) continues to be a good option to reduce technical losses in a distribution
power grid. However, this non-linear combinatorial problem is not easy to assess by exact methods when solving for
large distribution networks, which requires large computational times. For solving this type of problem, some researchers
prefer to use metaheuristic techniques due to convergence speed, near-optimal solutions, and simple programming. Some
literature reviews specialize in topics concerning the optimization of power network reconfiguration and try to cover
most techniques. Nevertheless, this does not allow detailing properly the use of each technique, which is important to
identify the trend. The contributions of this paper are three-fold. First, it presents the objective functions and constraints
used in DNR with the most used metaheuristics. Second, it reviews the most important techniques such as particle swarm
optimization (PSO), genetic algorithm (GA), simulated annealing (SA), ant colony optimization (ACO), immune
algorithms (IA), and tabu search (TS). Finally, this paper presents the trend of each technique from 2011 to 2016. This
paper will be useful for researchers interested in knowing the advances of recent approaches in these metaheuristics
applied to DNR in order to continue developing new best algorithms and improving solutions for the topi
MULTI-OBJECTIVE OPTIMAL CAPACITY AND PLACEMENT OF DISTRIBUTED GENERATORS IN THE POWER SYSTEM NETWORKS USING ATOM SEARCH OPTIMIZATION METHOD
Nowadays, renewable energy sources become a significant source of energy in the new millennium. The continuous penetration of dispersed resources of the reactive power into power systems is predicted to introduce new challenges. Power loss mitigation and voltage profile development are the major investigation challenges
that recently attracted the attention of researchers in the field of power systems. Distributed generation (DG) is widely preferred because it is a highly effective solution that strengthens the performance of power system networks. This multiobjective function study aims to minimise power losses in the feeders, sustain voltage levels and reduce the application cost of DGs by adapting the atom search optimisation simulated on MATLAB software. Two different IEEE power test systems, namely, a 33 bus radial distribution system (RDS) and a 14-bus power system that hosts 1, 2 and 3 DGs in both systems, are demonstrated in this research. Correspondingly, backward–forward sweep and Newton–Raphson power flow methods are used for each system. The proposed technique is compared with the genetic algorithm particle swarm optimisation (GA-PSO) method. Results depict the effectiveness of the proposed method in minimising system power losses and in regulating the voltage profile where the power loss reduction is 25.38% in the 33 bus RDS using 2 DGs. By contrast, the power loss reduction percentages in the 14 bus system are 0.316% and 0.169% in systems with 1 and 2 DGs, respectively. The voltage profile has been enhanced compared with those in the original case and the results obtained from the GA-PSO method
Expansion planning of power distribution systems considering reliability : a comprehensive review
One of the big concerns when planning the expansion of power distribution systems (PDS) is reliability. This is defined as the ability to continuously meet the load demand of consumers in terms of quantity and quality. In a scenario in which consumers increasingly demand high supply quality, including few interruptions and continuity, it becomes essential to consider reliability indices in models used to plan PDS. The inclusion of reliability in optimization models is a challenge, given the need to estimate failure rates for the network and devices. Such failure rates depend on the specific characteristics of a feeder. In this context, this paper discusses the main reliability indices, followed by a comprehensive survey of the methods and models used to solve the optimal expansion planning of PDS considering reliability criteria. Emphasis is also placed on comparing the main features and contributions of each article, aiming to provide a handy resource for researchers. The comparison includes the decision variables and reliability indices considered in each reviewed article, which can be used as a guide to applying the most suitable method according to the requisites of the system. In addition, each paper is classified according to the optimization method, objective type (single or multiobjective), and the number of stages. Finally, we discuss future research trends concerning the inclusion of reliability in PDS expansion planning
- …